Leonid Landsberg: 1930–2005

Was interested in many areas of physics.

Structure and properties of mesons and baryons: searches for quarks; searches for new hadronic states, including exotics; searches for new decay modes; improvements in limits and precision. Quite naturally:

Hyperon Radiative Decays

Review:

L.G.Landsberg Yad. Fiz. 59 (1996) 2161–2186 Phys. Atom. Nucl. 59 (1996) 2080–2104 "Radiative decays of hyperon resonances"

Overview of the talk:

- Hyperons
- Old measurements
- Recent measurements
- Future

Higher mass states

There are many, but two are of special interest:

• $\Lambda(1405)$	• $\Lambda(1520)$
$M=1406.5\pm0.4{\rm MeV}$	$M=1519.5\pm1.0{\rm MeV}$
$\Gamma = 50 \pm 2 \mathrm{MeV}$	$\Gamma = 15.6 \pm 1.0 \mathrm{MeV}$

While having quite complex structure in terms of quark model description, these states are experimentally well defined:

- firmly established
- quite narrow
- no overlapping resonances (like in 1670 MeV region)

V. Molchanov. Hyperon radiative decays. 19.12.2005.

Main radiative transitions

V. Molchanov. Hyperon radiative decays. 19.12.2005.

Our Knowledge In 1996

	Decay	$\Gamma [\text{keV}]$	1996	
86	$\Sigma^0 \to \Lambda \gamma$	8.9 ± 1.0		
	$\Sigma(1385)^+ \to \Sigma^+ \gamma$			t
77	$\Sigma(1385)^- \to \Sigma^- \gamma$	<24	*	ľ
75	$\Sigma(1385)^0 \to \Sigma^0 \gamma$	<1750	*	
75	$\Sigma(1385)^0 \to \Lambda\gamma$	<2000	*	i
	$\Lambda(1405) \to \Sigma(1385)^0 \gamma$			\mathbf{S}
91	$\Lambda(1405) \to \Sigma^0 \gamma$	19 ± 4 or 23 ± 7		r
91	$\Lambda(1405) \to \Lambda \gamma$	27 ± 8		r r
	$\Lambda(1520) \to \Lambda(1405)\gamma$			r
	$\Lambda(1520) \to \Sigma(1385)^0 \gamma$			-
87	$\Lambda(1520)\to\Sigma^0\gamma$	47 ± 11		
$68,\!87$	$\Lambda(1520) \to \Lambda\gamma$	134 ± 23 and 31 ± 11		
	$\Xi(1530)^- \to \Xi^- \gamma$			
	$\Xi(1530)^0 \to \Xi^0 \gamma$			

• About 10 theoretical papers • $\Sigma^0 \rightarrow \Lambda \gamma$ is the only sufficiently precise and non-controvercial measurement

New developments

J	
collective approach in 3-flavor Skyrme	A
$\mathrm{HB}\chi\mathrm{PT}$	ľ
chiral CQM with EM exch. curr.	I
algebraic model of hadron structure	E
$1/N_c$ expansion of QCD	Ι
light cone QCD	I
Bonn CQM	Ţ

Abada:1996db, Haberichter:1997cp Napsuciale:1997ny Wagner:1998bu, Wagner:2000ii Bijker:2000gq Lebed:2004zc Aliev:2004ju VanCauteren:2005sm

• Pentaquark $\Theta(1540)^+$ connection

Y.Oh, K.Nakayama and T.S.Lee. hep-ph/0511198. $\Lambda(1520)$ radiative decays are of interest for understanding strangeness photoproduction mechanisms

• Experiment: SELEX FNAL SPHINX Protvino CLAS JLAB

• Theory:

Search for Primakoff $\Sigma(1385)^{-}$ production

$$\Sigma^- + \mathrm{Pb} \to \Lambda \pi^- + \mathrm{Pb}$$

SELEX: $\Sigma(1385)^- \rightarrow \Sigma^- \gamma$

• No clear evidence for $\Sigma(1385)^-$ production \Longrightarrow only an upper limit $\Gamma[\Sigma(1385)^- \to \Sigma^- \gamma] < 9.5 \,\text{keV} \quad (90\% \,\text{CL})$

Predictions for $\Sigma(1385)^- \to \Sigma^- \gamma$

SU(3/6) breaking			1 - 7
MIT bag	R.H.Hackman	PR D18(1978)2637.	1.5
NRQM	J.W.Darewych	PR D28 $(1983)1125$	2.5
$\mathrm{HB}\chi\mathrm{PT}$	M.N.Butler	NP B399(1993)69	1.6 - 2.4
$\mathrm{HB}\chi\mathrm{PT}$	M.Napsuciale	NP B494(1997)260	9.5
Qunched lattice	D.B.Leinweber	PR D48(1993)2230	3.3 ± 1.2
field-theoretic QM	R.K.Sahoo	PR $D52(1995)4099$	2.5
bound-state soliton	C.L.Schat	PL B356(1995)1.	1
3-flavor Skyrme	A.Abada	PL B366(1996)26	1; 2
3-flavor Skyrme	T.Haberichter	NP A615(1997)291	1.17 – 2.27
$\chi {\rm CQM}$ / exch. curr.	G.Wagner	PR C58(1998)1745	3.61
$\chi {\rm CQM}$ / exch. curr.	G.Wagner	J.Phys. G26(2000)267	3.1
$1/N_c$ expansion	R.F.Lebed	PR D70(2004)057901	0.58 ± 0.70
light cone QCD	T.M.Aliev	hep-ph/0406331	0.38 ± 0.06
Bonn CQM	T.VanCauteren	$\mathrm{nucl-th}/\mathrm{0509047}$	11.7

SPHINX Detector

V. Molchanov. Hyperon radiative decays. 19.12.2005.

SPHINX:
$$\Lambda(1520) \rightarrow \Lambda \gamma$$

Backgrounds:

- $\Sigma(1385)^0 \to \Lambda \pi^0 \ (1\gamma \ \text{lost})$
- $\Lambda(1405) \to \Sigma^0 \pi^0 \ (2\gamma \ \text{lost})$
- $\Lambda(16xx), \Sigma(16xx)^0$
- $\Lambda(1520) \rightarrow \Sigma^0 \pi^0 \ (2\gamma \ \text{lost})$

•
$$\Lambda(1520) \to \Sigma^0 \gamma \ (1\gamma \ \text{lost})$$

 $\Gamma[\Lambda(1520) \to \Lambda \gamma] = 159 \pm 33 \pm 26 \,\mathrm{keV}$

V. Molchanov. Hyperon radiative decays. 19.12.2005.

SPHINX:
$$\Lambda(1520) \rightarrow \Sigma^0 \gamma$$

Backgrounds:

• $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$

•
$$\Lambda(16xx) \rightarrow \Sigma^0 \pi^0$$

•
$$\Lambda(1520) \rightarrow \Sigma^0 \pi^0$$

Very preliminary:

$$\Gamma[\Lambda(1520) \to \Sigma^0 \gamma] \sim 130 \,\mathrm{keV}$$

V. Molchanov. Hyperon radiative decays. 19.12.2005.

CLAS Detector

Fig. 2. Side view of the CLAS detector in Hall B with beamline and associated equipment.

CLAS Detector

Toroidal magnetic field

CLAS Detector Parameters

- Datataking: September-October 1999
- Target: liquid H₂
- Primary beam

Electron energy		$2.445,2.897$ and $3.115{\rm GeV}$
Photon energy		20–95% of the electron
Photon resolution		$\Delta E/E = 1 \cdot 10^{-3}$
Particle ID		
π/K separation	p	$\leqslant 2 \mathrm{GeV}$
π/p separation	p	$\leqslant 3.5{ m GeV}$
Resolutions		
Momentum	σ	$\sigma(p)/p \approx 0.5\%$ for $\theta \lesssim 30^{\circ}$
	σ	$p(p)/p \approx (1-2)\%$ for $\theta \gtrsim 30^{\circ}$
Polar angle	σ	$r(\theta) \approx 1 \mathrm{mrad}$
Azimuthal angle	σ	$\sigma(\phi) \approx 4 \mathrm{mrad}$
Photon energy	σ	$T(E)/E \approx 10\%/\sqrt{E/\text{GeV}}$

Only basic ideas are highlighted.

 $\gamma p \to K^+ \Lambda \pi^0 \quad 1\text{C-fit}$ $\gamma p \to K^+ \Lambda \gamma \quad 1\text{C-fit}$

V. Molchanov. Hyperon radiative decays. 19.12.2005.

CLAS: $\Lambda(1520) \rightarrow \Lambda \gamma$

• Favourable background conditions

Reaction	A_{π}	A_{γ}	$A_{\gamma\pi}$
$\Lambda(1405) \to \Sigma^0 \pi^0$	$0.083 {\pm} 0.004$	$0.0007 {\pm} 0.0004$	$0.658 {\pm} 0.012$
$\Lambda(1405) \to \Sigma^+ \pi^-$	$0.088 {\pm} 0.005$	$0.0038 {\pm} 0.0009$	$0.013 {\pm} 0.002$
$\Lambda(1405) \to \Lambda \gamma$	0.008 ± 0.003	$0.946 {\pm} 0.028$	$0.098 {\pm} 0.009$
$\Lambda(1405) \to \Sigma^0 \gamma$	$0.585{\pm}0.019$	$0.380 {\pm} 0.015$	$0.837 {\pm} 0.023$
$\Sigma(1385) \to \Lambda \pi$	$0.905 {\pm} 0.010$	$0.011 {\pm} 0.001$	$0.086 {\pm} 0.003$
$\Sigma(1385) \to \Sigma^+ \pi^-$	$0.050 {\pm} 0.002$	$0.0018 {\pm} 0.0005$	$0.00564{\pm}0.0008$
$\Sigma(1385) \to \Lambda \gamma$	$0.012 {\pm} 0.002$	$1.309 {\pm} 0.022$	$0.105 {\pm} 0.006$
$\Sigma(1385) \to \Sigma^0 \gamma$	$0.548 {\pm} 0.016$	$0.24{\pm}0.01$	$0.99 {\pm} 0.02$
$\Lambda(1520) \to \Lambda \gamma$		$1.388 {\pm} 0.027$	$0.0010 {\pm} 0.0007$
$\Lambda(1520) \to \Sigma^0 \gamma$		$0.087 {\pm} 0.006$	$0.586 {\pm} 0.016$
$\Lambda(1520) \to \Lambda \pi^0 \pi^0$		0	$0.0099 {\pm} 0.0016$
$\Lambda(1520) \to \Sigma^0 \pi^0$		$0.0006 {\pm} 0.0004$	$0.681 {\pm} 0.014$

Acceptaces in units of 10^{-3}

$$\Gamma[\Lambda(1520) \rightarrow \Lambda \gamma] = 167 \pm 43^{+26}_{-12} \,\mathrm{keV}$$

CLAS: $\Sigma(1385)^0 \to \Lambda \gamma$

Much more complex than the $\Lambda(1520)$ case.

There is a background due to $\Lambda(1405) \rightarrow \Lambda \gamma$. Fortunately, this width is measured to be $27 \pm 8 \text{ keV}$. Ignoring contribution due to $\Sigma(1385)^0 \rightarrow \Sigma^0 \gamma$ decay:

$\Gamma[\Sigma(1385)^0 o \Lambda \gamma] = 479 \pm 120 {+81 \atop -100} \, { m keV}$

This is 2–3 times larger than most model predictions

Predictions for $\Lambda(1520)$ and $\Sigma(1385)^0 \to \Lambda \gamma$

			$\Sigma(1385)^0$	$\Lambda(1520)$
MIT bag	R.H.Hackman	PR D18(1978)2637.	211; 191	
MIT bag	E.Kaxiras	PR D32(1985)695	152	46; 27
NRQM	J.W.Darewych	PR D28(1983)1125	232	96
RQM	M.Warns	PL B258(1991)431	267	215
chiral bag	Y.Umino	NP A554(1993)593		31.46
$\mathrm{HB}\chi\mathrm{PT}$	M.N.Butler	NP B399(1993)69	290 - 470	
bound-state soliton	C.L.Schat	PL B356(1995)1.	243;170	
3-flavor Skyrme	A.Abada	PL B366(1996)26	180 - 209	
3-flavor Skyrme	T.Haberichter	NP A615(1997)291	157 - 209	
χ CQM / exch. curr.	G.Wagner	PR C58(1998)1745	265	
χ CQM / exch. curr.	G.Wagner	J.Phys. G26(2000)267	249	
algebraic model	R.Bijker	Annals Phys. 284(2000)89	221.3	85.1
$1/N_c$ expansion	R.F.Lebed	PR D70(2004)057901	298 ± 25	
light cone QCD	T.M.Aliev	hep-ph/0406331	140 ± 20	
Bonn CQM	T.VanCauteren	$\mathrm{nucl-th}/\mathrm{0509047}$	1527	258

From 1996 To 2005

Decay	1996	2005
$\Sigma^0 \to \Lambda \gamma$		
$\Sigma(1385)^+ \to \Sigma^+ \gamma$		
$\Sigma(1385)^- \to \Sigma^- \gamma$	*	*
$\Sigma(1385)^0 \to \Sigma^0 \gamma$	*	
$\Sigma(1385)^0 \to \Lambda\gamma$	*	
$\Lambda(1405) \to \Sigma(1385)^0 \gamma$		
$\Lambda(1405) \rightarrow \Sigma^0 \gamma$		
$\Lambda(1405) \to \Lambda\gamma$		
$\Lambda(1520) \rightarrow \Lambda(1405)\gamma$		
$\Lambda(1520) \to \Sigma(1385)^0 \gamma$		
$\Lambda(1520) \to \Sigma^0 \gamma$??
$\Lambda(1520) \to \Lambda\gamma$		
$\Xi(1530)^- \to \Xi^- \gamma$		
$\Xi(1530)^0 \to \Xi^0 \gamma$		

Experimental Perspectives in 1996

Summarized by LGL in 1996 review:

- Primakoff production (SELEX)
- $\Sigma^{\pm} \to \Sigma(1385)^{\pm}$
- $\overline{\Sigma}^- \to \overline{\Sigma(1385)}^-$
- $\Xi^- \rightarrow \Xi(1530)^-$
- $\Xi^- \rightarrow \Xi(1820)^-$
- Direct observation in exclusive production (SELEX, SPHINX)

$$\Sigma^- + N \to \Lambda^*(\Sigma^*)\pi + N$$

 $p+N\to\Lambda^*(\Sigma^*)K+N$

- Virtual photon beam (CLAS)
- $e^- + p \to e^- + \Lambda K^+$ study $\Lambda \gamma^*$ near $\Lambda(1405)$

These perspectives are now realized: SELEX performed worse than expected, SPHINX more or less as expected, CLAS better than expected.

SELEX, SPHINX, CLAS exhausted their possibilities (completely?)

Wait for lattice

No hyperon beam is planned anywhere

Production reactions in other beams

• JLAB Hall D γ beam

There is a proposal to search for exotic mesons.

There could be a place for hyperon EM decays as well.

U-70 OKA K⁻ beam
Can produce lots of hyperons.
How to detect EM decays? Exclusive reactions.

Liquid H_2 target combined with good guard system.

• Any p beam Like SPHINX, only x10 better.

The question LGL would ask is: how can we take part in that game?

Speculations

How to make x10 better proton experiment in Protvino? SPHINX was built about 20 years ago. There has been significant progress in detector technology. In particular, it is connected with development of kaon experiments. Great deal of that expertise is concentrated in IHEP.

Increase signals and lower backgrounds:

\bullet increase statistics	running time
	beam rate ($\approx 230 \text{ MHz}$ in Kplus)
	DAQ (OKA, CKM)
\bullet improve resolutions	microstrips (SVD)
	straw tubes ($\sigma \approx 150 \mu \text{m}$ in Kplus)
	ECAL (KOPIO: $\sigma(E)/E \approx 3\%/\sqrt{E/\text{GeV}}$)
• improve veto system	Pb/scintillator sandvich (KOPIO: $\approx 1 \mathrm{MeV}$)
\bullet improve analysis	polarization measurement in $\Lambda \to p\pi^-, \Sigma^+ \to p\pi^0$
	polarized beam (planned at IHEP) allows PWA
\bullet improve veto MC	measure veto time and amplitude (CKM)
Technically feasible.	