Скопления галактик и сверхмассивные черные дыры

E.Чуразов, W.Forman, A.Вихлинин, P.Сюняев, S.Tremaine, C.Jones, H.Boehringer, С.Сазонов, M.Brueggen, C.Kaiser, S.Heinz, O.Gerhard

Clusters and Dark Matter

$$R \sim 1 \,\mathrm{Mpc}, \ \sigma \sim 1000 \,\mathrm{km/s}$$

 $T = -\frac{1}{2}U$
 $\frac{GM}{R} \approx \langle v \rangle^2 = 3\sigma^2$

While examining the Coma galaxy cluster in 1933, **Zwicky** was the first to use the virial theorem to infer the existence of unseen matter, what is now called dark matter. He obtained a cluster mass about 160 times greater than expected from galaxies luminosity, and proposed that most of the matter was dark.

(DM) Potential Well + Gas (baryons)

Optical

X-rays

Typical X- may spectrum of a cluster

Bremsstrahlung + emission lines of ions (like He-like Fe)

Dark matter ~80%

Stars, few %

Gas,~15%

Clusters of galaxies and Dark Energy first clusters

Clusters of galaxies and Dark Energy

$$\Omega_{M}, \quad \Omega_{\Lambda}$$

$$p_{X} = w\rho_{X}$$

$$w = w_{0} + w_{a}(1-a)$$

$$w \equiv -1 \text{ Cosmological Constant}$$

$$\Omega_{\Lambda} \approx 0.75 \text{ at } z = 0, \quad \Omega_{\Lambda} \approx 0.1 \text{ at } z = 2$$

How to measure DE properties (equation of state)?

Standard candle - SNIa Standard rules – baryonic oscillations (clusters, galaxies,....) Growth of perturbations – number of clusters (clusters, lensing)

WMAP: Temperature fluctuations ~10⁻⁵

Use theory + observations (e.g. CMB) as initial conditions

Clusters mass function at different redshifts

Vikhlinin et al., 2006, 2008 Burenin et al., 2007

Spectrum-RG All-Sky Survey (2011-2015)

Spectrum-RG All-Sky Survey

Area covered	41 253 deg ²
Duration	4 years
Mean exposure per field	1315 c
Sensitivity (0.5-2 keV)	4×10 ⁻¹⁴ erg cm ⁻² s ⁻¹
Expected number of clusters	~100000

SRG sensitivity => ALL clusters

NASA/WUAP Science Team

Number of clusters as a function of redshift

Concordance model: Ω_M =0.3, Ω_Λ =0.7, h=0.73 Normalization at z=0.2 (σ_8)

Baryonic oscillations (Zeldovich, Sunyaev, Peebles, Yu)

500 Mpc/h

Standard ruler at z~1000

Standard ruler today

Back to Dark Matter - direct empirical evidence

Bullet cluster, X-ray image (Markevitch et al.)

Optical image of the same cluster

Mass distribution (from lensing)

Optical, Mass, X-rays

Clusters of Galaxies are extremely useful objects for Cosmology (Dark Matter and Dark Energy)

Clusters and Supermassive black holes

Dark Matter (Sim) X-rays

DM does not radiate energy => does not cool Gas loses energy => cools

Cooling flows

Cooling time

$$t_{cool} = \frac{\frac{3}{2}nkT}{n^2\Lambda(T)} \approx 510^8 \text{ years}$$
Cooling rate

$$\dot{M} = \frac{L_X}{5} \times \mu m_p \approx 600 \ M_{\odot} \ \text{yr}^{-1} \qquad (L_X = 10^{45} \ \text{erg/s})$$

$$\frac{5}{2} kT \qquad \text{[see Fabian, 1994 for review]}$$

Surface brightness

Temperature 10.0 2.0

Cooling flows - emission lines?

Why the gas does not cool?

We need 10⁴³-10⁴⁵ erg/s!!!!!

Supermassive black hole

M87 (gas looses 10⁴³ erg/s)

Radio (synchrotron radiation) Relativistic plasma

Radio Relativistic plasma

X-rays Thermal plasma

Radio Relativistic plasma

X-rays Thermal plasma

Shock wave in M87

Simulations

Observations

Ruszkowski+, 04

Forman+, 07

Sedov Tylor problem?

Shock wave in M87

E~5 10⁵⁷ erg; Δ t~2 Myr; t~12 Myr

Power =
$$\frac{510^{57} \text{ erg}}{1.210^7 \text{ yr}} \approx 10^{43} \text{ erg/s}$$

Can we estimate jet power over longer period?

Churazov et al., 2001

Measuring jet power with bubbles

Expansion versus buoyancy

expansion velocity $v_{exp} : L_j \times t \approx PV$ rise velocity $v_{rise} : v_K \sqrt{\frac{r}{R}} \approx f c_s$

$$v_{exp} \approx v_{rise}$$

 $L_j \approx \text{few } 10^{43} - 10^{44} \text{ erg/s}$

$$L \approx \text{few } 10^{43} - 10^{44} \text{ erg/s}$$

Directly observed

X - ray cooling :
$$L_x \approx 10^{43}$$
 erg/s [over 100 Myr]

Derived from AGN/gas interaction

From shock : $L_{Jet} \approx 10^{43}$ erg/s [over 10 Myr] From bubbles : $L_{Jet} \approx \text{few } 10^{43}$ erg/s [over 100 Myr]

$$L_{Jet} \approx L_X \implies$$
 Enough energy to stop cooling
 $L_{Jet} >> L_{bol} \implies$ Radiatively inefficient accretion

Do we see similar structures in other objects?

In each object the power provided by SMBH is about right! How SMBH knows the right power?

Self-regulation of AGN power

$$L_{jet} \propto \dot{M}_{Bondi} = 4\pi\lambda (GM_{BH})^{2} \rho / c_{s}^{3} \propto s^{-3/2}$$

$$L_{jet} > L_{cooling} \Longrightarrow s \text{ - increases} \Longrightarrow L_{jet} \text{ - decreases}$$

$$L_{jet} < L_{cooling} \Longrightarrow s \text{ - decreases} \Longrightarrow L_{jet} \text{ - increases}$$

System with negative feedback (self regulated)
 Stable equilibrium is possible

AGN feedback keeps the gas in cluster's cores hot!

Similar AGN feedback is now believed to be a crucial ingredient in evolution of galaxies

Plasma in clusters

What we know for sure?

Electron density $\sim 10^{-1} - 10^{-4}$ cm⁻³ Electron temperature $\sim 2 - 15$ keV

> Magnetic fields? Viscosity? Thermal conduction? Cosmic rays?

Stars: gravity

Gas: gravity, magnetic fields, cosmic rays, turbulence

1 $dn\sigma^2$ $d\phi$ dr n dr

Jeans equation (isotropic)

 $\frac{1}{\rho} \frac{dP}{dr} = -\frac{d\varphi}{dr}$

Hydrostatic equilibrium

 $P = nkT + \frac{B^2}{8\pi} + P_{CR} + P_{turb}$ $\varphi_X(r) \approx \alpha \, \varphi_{true}(r), \qquad \alpha \leq 1$

$$\frac{P_{gas}}{P_{mag}} \ge 15; \quad H \le 10 \ \mu G$$

$$r_{l} \approx \gamma \times 10^{-10} \left(\frac{B}{10 \ \mu G}\right)^{-1} \text{ kpc}$$

$$\lambda_{e} = \lambda_{i} = 2 \left(\frac{T}{10^{8} \text{ K}}\right)^{2} \left(\frac{n_{e}}{10^{-2} \text{ cm}^{-3}}\right)^{-1} \text{ kpc}$$

$$k = 4.6 \times 10^{13} \left(\frac{T}{10^{8} \text{ K}}\right)^{5/2} \left(\frac{\Lambda}{40}\right)^{-1} \text{ erg cm}^{-1} \text{ s}^{-1} \text{ K}^{-1}$$

Jump condition, Mach number, adiabatic index

Sharp edges in the surface brightness (shock waves?)

Surface brightness (density)

Gas temperature (blue- cold)

Contact discontinuity! - Cold front

Cloud in the wind

Ram pressure "shaves" the cloud head, forming a sharp edge Heinz et al., 2003

What suppresses Kelvin-Helmholtz instability What suppresses thermal conductivity?

Magnetic field? (Vikhlinin et al, 2001)

Gas motions inside the cloud

Contraction/stretching near stagnation point

Stretching/contraction (partly) suppresses instabilities (Churazov & Inogamov, 2004)

Magnetic field enhancement

We do not know effective conduction and viscosity We do not know topology and strength of B field We do not know if the medium is turbulent or not

We learning and hope to learn more:

Velocity with X-ray spectroscopy => turbulence

Gamma-rays => Cosmic Rays (protons)

- 1. Clusters are useful objects for Cosmology
- 2. SMBHs keep the gas in the cores hot (same process operate in galaxies)
- 3. We starting to learn more on plasma in clusters (beyond just density and temperature)

Clusters have bright future ahead (next 10 years)!