Обзор материалов конференции Quark Matter 2008

Ю.Харлов ОЭФ, ИФВЭ Семинар ИФВЭ 6 марта 2008

Общая информация

- Полное название: "20-я международная конференция по ультра-релятивистским ядерным столкновениям"
- Место проведения: Индия, Джайпур, 4-10 февраля 2008
- Всего участников: около 600 из 31 стран
- Пленарных докладов: 53
- Докладов на параллельных секциях: 132
- Постеров: **около 250**
- Сайт конференции:

http://www.veccal.ernet.in/qm2008.html

Эксперименты в области релятивистской ядерной физики

- SPS @ CERN: WA98, NA45, NA49, NA60 и др
- RHIC @ BNL: PHENIX, STAR, PHOBOS, BRAHMS
- LHC @ CERN: ALICE, CMS, ATLAS
- SIS300 @ FAIR: CBM

Основные наблюдаемые

- Hard probes
- Fluctuations
- Strangeness
- Heavy flavours
- Collective effects
- Hadron spectral functions

HARD PROBES

Photons, Leptons, Hadrons

Photons, leptons:

- Penetrating probes that carry information about their production.
- Rare processes
 - Need large data samples
- Large backgrounds
 - Need precise background determination
 - Background γ from decays of π^0 and η
 - Electrons from γ conversions
 - Combinatorial Backgrounds

Hadrons

- Products of partons fragmentation
- Partons strongly interact with quark matter and loose energy

Nuclear Suppression Dependence on:

arXiv:0801.4555

- Model calculations indicate quenching expected at $\sqrt{s_{NN}}$ = 22 GeV
- Species dependence to probe space/time of suppression

Direct γ Au+Au: $\gamma_{\text{direct}} = \gamma_{\text{inclusive}} - \gamma_{\text{decay}}$

- Run 2: No γ suppression -> Jet quenching (PRL 94, 232301 (2005)).
- Run 4 (QM06): High pT γ suppression
 - Isospin (PDF) effect (+ ?)

Dependence of Nuclear Suppression

- R_{AA} scales with N_{part} at same $\sqrt{s_{NN}}$
 - Some indication for "higher order" effects
- Approximate scaling with <ρL>
- Use $R_{AA}(N_{part}, \sqrt{s_{NN}})$, Species, Pathlength) to illuminate models

Session I: Klaus

Reygers

Heavy quarks suppression

• Heavy quarks show same suppression as light quarks at high pT?? With substantial bottom contribution??

• maybe there is some universal suppression mechanism (i.e. not usual energy loss) ?? Single electron (c, b semi-leptonic decay) RAA

Medium Response

p+p, peripheral Au+Au

central Au+Au

- Near-side Jet

- Away-side Jet "Head"

- Near-side Modification - "Ridge"

- Away-side Modification – "Shoulder"

Near-side Ridge theories: Boosted Excess, Backsplash, Local Heating,... Away-side Shoulder theories: Mach, Jet Survival + Recom, Scattering,...

Conical? flow – RP dependence

The position of the cone? does not change with angle of trigger hadron *wrt reaction plane*.

- But we do see the di-jet remnant behave as expected Decreases as ϕ_t - Ψ_{RP} increases

GLOBAL EVENT CHARACTERISTICS

Transverse Energy

 $dE_T/d\eta/N_{part}$ inceases with \sqrt{s} and N_{part}

FLUCTUATIONS AND CORRELATIONS

Correlations and Fluctuations

- Look for discontinuities or changes in experimental results for correlations and fluctuations as a function of incident energy
 - *K*/*I* Fluctuations
 - Balance Function
 - Net Charge Fluctuations
 - Multiplicity Fluctuations several approaches
 - $-p_t$ Correlations

Particle Ratio Fluctuations @ PHENIX

$$u_{dyn}(K,\pi) = \frac{\left\langle \pi(\pi-1) \right\rangle}{\left\langle \pi \right\rangle^2} + \frac{\left\langle K(K-1) \right\rangle}{\left\langle K \right\rangle^2} + \frac{\left\langle K\pi \right\rangle}{\left\langle K \right\rangle \left\langle \pi \right\rangle}$$

Fluctuation in the ratio of two particle species:

- $v_{dyn} = 0$: only statistical fluctuations
- $v_{dyn} > 0$: larger fluctuations
- $v_{dyn} < 0$: damped fluctuations

C. Pruneau, S.Gavin, S.Voloshin, Phys. Rev. C 66 044904 (2002)

Particle ratio fluctuation show no indication of critical behaviour

Fluctuations: Conclusions

- We have experimental results for correlations and fluctuations covering incident energies where one might expect effects from the QCD critical point and we have some hints in the
- However, the results are not conclusive
- In particular, we have several different variables, acceptances, and interpretations that need to be unified
- We need to measure correlation fluctuation variables over the broadest range in incident energy and system size
- The SPS and RHIC scans will provide an excellent opportunity to study the QCD critical point

Rich underlying physics: jet, bulk, jet-medium interaction, medium responses,...

N. Armesto et al.; R. Hwa; A. Majumder, et al.; E. Suryak; S. Voloshin; C.Y. Wong

Two-particle Correlations in Cu+Cu and Au+Au Collisions

Parallel: W. Li

1) Short range cluster-like structure in A+A as in p+p.

2) Elliptic flow over large range of $\Delta \eta$ in A+A collisions.

Reaction Plane Dependence

STRANGNESS PRODUCTION

New ϕ Puzzle from SPS

NA60 vs NA49 (full phase space): Also $\phi \rightarrow \mu \mu$ in In-In higher than NA49 yield (like NA50).

Looking forward to the NA60 $\phi \rightarrow KK$ results from In-In collisions.

"Difference in $\phi \rightarrow \mu\mu$ and $\phi \rightarrow KK$ yields seems confirmed - related to a real physics mechanism (kaon absorption)?"

– The ϕ mass is consistent with PDG value at $p_T{>}0.7$ GeV/c while a drop of ~2.5 MeV at lower p_T

– The ϕ mass value from data and simulation are consistent and the drop at low p_T is understood within detector effects

ϕ dN/dy and <p_T>

- The dN/dy and p_T are similar for Cu+Cu and Au+Au at similar N_{part} bin for the same collisions energy.

– \$\ophi\$ yields from Au+Au and
Cu+Cu collisions depend
on the number of
participant nucleons only,
unlike Kaon and hyperons.

see STAR Xiaobin Wang – parallel session VII

1] NA49 Col. Phys. Rev. Lett. <u>96</u>, 052301 (2005);
2] E-802 Col. Phys. Rev. C <u>60</u>, 044904 (1999).

Strangeness enhancement @ STAR

φ-meson enhancement showsa distinct collision centralityand energy dependence.

The enhancement factor of the ϕ -meson production (yield per Npart) lies between those of K/ Λ and Ξ , and decreases from 200 GeV to 62.4 GeV data unlike hyperons.

HEAVY FLAVOURS

Cold and hot matters @ SPS

- <u>Normal nuclear absorption alone</u> does a splendid job describing pA, SU and peripheral InIn and PbPb:
 - $-\sigma_{abs} = 4.18 \pm 0.35 \text{ mb}$
- Beyond is "anomalous suppression"
- Observed suppression exceeds
 nuclear absorption
- Onset of the suppression in In-In at N ~ 80

29

R_{AuAu} (y≈0 in PHENIX) ≈ R_{PbPb} (@ SPS)

- Lower rapidity R_{AA} looks surprisingly similar, while there are obvious differences:
 - At a given N_{part}, different energy densities...
 - Cold nuclear matter effects ($x_{Bjorken}, \sigma_{abs}...$)

R_{AuAu} (y≈1.7) < R_{AuAu} (y≈0) in PHENIX

J/ψ Au+Au @ PHENIX

J/ψ R_{AuAu} 200 GeV (Run4)

Large errors still (need Run 8 d+Au, Run 7 Au+Au)

arXiv:0711.3917

- Comparison suggests more forward suppression beyond CNM than at midrapidity
- BUT models shown don't describe R_{dAu} impact parameter dependence

- Different scaling in pA and AA collisions
- Something else going on in AA?
 - High $p_T J/\psi$ escape?
- Linear increase of <p_T²> with L, consistent with gluon scattering in the initial state

Open charm: physics motivations

Open charm: $d\sigma/dy$ in STAR...

 Accurate background subtraction is crucial

 Systematic study is ongoing

Heavy Flavor via non-photonic Electrons

Preliminary Run 7 HF v_2 result:

COLLECTIVE EFFECTS

Anisotropy Parameter v₂

Initial/final conditions, EoS, degrees of freedom

Flow

- azimuthal anisotropy,
- pressure gradient from initial spatial asymmetry or eccentricity
- second moment of Fourier coefficient, v₂, shows good agreement with hydrodynamical models of low viscosity fluid

Direct γv_2 : Au+Au 200 GeV

- Interested in sign of direct γv_2 (at high p_T):
 - Positive == parton emission quenched

Results suggest positive v_2

٠

- Negative == parton emission (Brems.) enhanced
- Session XV: Kentaro Miki
 - 40

observed quark DOF scaling up to $KE_T/n_q \sim 1GeV/c^2$ for p,K,p,d, ϕ

v_4 - scales with v_2

v_2 - identified particles @ high p_T

charged and neutral pions agree well

1) v_2 scaled with eccentricity increase with centrality: reflects the strength of collective expansion.

2) For large values of N_{part} , scaled v_2 tends to saturate, as expected in an equilibrium scenario.

New Results Non-photonic e v₂

Heavy quark collectivity => light quark thermalization! Muller *nucl-th/0404015* Non-photonic electron v₂ indicates non-zero v₂ of Charm-hadrons.
 Large systematic errors.

Need *directly reconstructed* heavy quark-hadrons!!

HADRON SPECTRAL FUNCTIONS

Dileptons at RHIC

Expected sources

- Light hadron decays
 - Dalitz decays π^0 , η
 - Direct decays ρ/ω and ϕ
- Hard processes
 - Charm (beauty) production
 - Much larger at RHIC than at SPS
- Photons and dileptons: radiation from the media
 - direct probes of any collision stages (no final-state interactions)
 - large emission rates in hot and dense matter
 - according to the VMD their production is mediated in the hadronic phase by the light neutral vector mesons (ρ, ω, and φ) which have short life-time
- Changes in position and width: signals of the chiral transition?

HI low-mass dileptons at a glance

energy scale of experiments

Au+Au M_{ee} at PHENIX

Au+Au: enhancement concentrated at low p_T

PHENIX, A.Toia, Quark Matter 2008

PHENIX LM dileptons summary

• First measurements of dielectron continuum at RHIC

p+p Low mass

• Excellent agreement with cocktail

Au+Au

Low mass

- Enhancement above the cocktail expectations: 3.4±0.2(stat.) ±1.3(syst.)±0.7(model)
- Centrality dependency: increase faster than N_{part}
- p_T dependency: enhancement concentrated at low p_T

NA60: Excess e⁺e⁻ mass spectra vs centrality

clear excess above the cocktail ρ (bound to the ω with $\rho/\omega=1.0$)

excess centered at the nominal p pole rising with centrality monotonic broadening with centrality

ψ "melting" of the ρ

In-medium ρ spectral function identified; no significant mass shift of the intermediate ρ , only broadening; connection to chiral restoration?

NA60, S. Damjanovic, Quark Matter 2008

NA60: Centrality dependence of e⁺e⁻ excess yields

- strong increase of continuum (by a factor of >10)
- decrease of ρ peak (nearly a factor of 2)
- rapid initial increase of total, reaching already 3 at $dN_{ch}/d\eta = N_{part} = 50$

Direct Radiation from the Matter

FUTURE PROGRAMS

ALICE: A Large Ion Collider Experiment at CERN-LHC

- 'stable' hadrons (π , K, p): 100 MeV/c \pi and p with ~ 80 % purity to ~ 60 GeV/c)
 - dE/dx in silicon (ITS) and gas (TPC) + time-of-flight (TOF) + Cherenkov (RICH)
- decay topologies (K⁰, K⁺, K⁻, Λ , D)
 - K and L decays beyond 10 GeV/c
- leptons (e, μ), photons, π^0
 - electrons TRD: p > 1 GeV/c, muons: p > 5 GeV/c, π^0 in PHOS: 1 < p < 80 GeV/c

• excellent particle ID up to ~ 50 to 60 GeV/c

The LHC Ion Collider

• Running conditions for 'typical' Alice year:

Collision system	√s _{NN} (TeV)	L ₀ (cm ⁻² s ⁻¹)	<l>/L₀ (%)</l>	Run time (s/year)	σ _{geom} (b)
рр	14.0	10 ^{31*}		10 ⁷	0.07
PbPb	5.5	10 ²⁷	70-50	10 ^{6 * *}	7.7

- + other collision systems: pA, lighter ions (Sn, Kr, Ar, O)
- energies (pp @ 5.5 TeV).

* L_{max} (ALICE) = 10³¹ ** Lint (ALICE) ~ 0.7 nb⁻¹/year

The CBM experiment

• tracking, momentum determination, vertex reconstruction: radiation hard silicon pixel/strip detectors (STS) in a magnetic dipole field

- hadron ID: TOF (& RICH)
- photons, π^0 , η : ECAL

- PSD for event characterization
- high speed DAQ and trigger \rightarrow rare probes!

Dileptons in CBM

• dileptons are only one of several very interesting physics topics of CBM CBM: comprehensive measurement of A+A interactions from 10-45 AGeV including rare probes (charm, dileptons), flow, correlations, fluctuations

• measurement of dileptons (low and high masses) very interesting at FAIR: CBM: 10-45 AGeV, HADES 2-10 AGeV

- highest baryon densities reached, phase border to partonic phase
- restoration of chiral symmetry? critical point?
- charm production at threshold? charm propagation in-medium?
- dileptons from ρ to ψ measurable in electron and muon channel
- similar performance although background is of very different origin
- good phase-space coverage
 - low-mass dielectrons even down to lowest masses and pt
- detector development started
- CBM will (hopefully) not be limited by statistics
- systematic uncertainties might be limiting in the end

 \rightarrow a measurement of both, muons and electrons will be the best systematic study we can ever do!

STAR Beam Energy Scan at RHIC: $\sqrt{s_{NN}} \sim 5-50 \text{ GeV}$ experimental window to QCD phenomenology at finite temperature and and baryon number density

Grazyna Odyniec

RHIC run 10 (fall 2009)

(1) Large energy range accessible

STAR

(2) Collider geometry (acceptance won't change with \sqrt{S} , track density varies slowly)

(3) STAR detectors well suited (large acceptance), tested & understood

STAR PAC 2007 Strawman proposal:

√s _{NN} [p _{ft}]	μ_{B}	<bbc rate=""></bbc>	Days/	# events	# beam days
GeV [GeV/c]	[MeV]	[Hz]	Mevent		
4.6 [9.6]	570	3	9	5M	45
6.3 [18.8]	470	7	4	5M	20
7.6 [27.9]	410	13	2	5M	10
8.8 [37.7]	380	20	1.5	5M	7.5
12 [71.0]	300	54	0.5	5M	2.5
18 [161]	220	>100	0.25	5M	1.5
28 [391]	150	>100	0.25	5M	1.5

Note: NA61 @ CERN (starting in 2010): 10, 20, 30, 40, 80, 158 GeV/c

Grazyna Odyniec

STAR future:

- The unique RHIC energy scan program will map the QCD diagram in $\sqrt{s_{NN}}$ =5-50 GeV, (corresponding to $\mu_B \sim$ 600-150 MeV)
 - systematic study of collective dynamics and fluctuations with p, Λ , Ξ , Ω , π , K, K*, ρ , ϕ ...
 - turning off partonic activities (e.g. v_2 of ϕ , Ω , D no NQ scaling, quenching ->0, ...)
- STAR detector with 2π acceptance is ready to carry out this program
 - can trigger on low energy events (tests)
 - full TOF in 2010 -> PID
 - low energy e-cooling at RHIC extremely beneficial

NA 49/61 Future Program

Virtual Journal on QCD Matter

- Digest of preprints on
 - hot & dense QCD matter
 - the QGP
 - relat. heavy-ion collisions
- Targeted at graduate students & junior postdocs
- Aims to provide a bigger picture, on how individual publications shape the advancement of the field

http://qgp.phy.duke.edu/

