Скалярные мезоны σ и а₀ в распадах η'- и η-мезонов

А.В. Лучинский

Институт физики высоких энергий, Протвино, Россия

Содержание

≻ Скалярные мезоны \succ $\eta' \rightarrow \eta \pi^0 \pi^0$ Краткая история резонансная модель $\succ \pi^0 \pi^0$ -рассеяние ≻ π⁰η-рассеяние Результаты фита Обсуждение $> \eta', \eta \rightarrow 3\pi^0$ Киральная параметризация резонансная модель ≽ Заключение

Скалярные мезоны

Скалярные мезоны

 $f_0(600)^{[i]}$ or σ

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m = (400 - 1200) MeV Full width $\Delta = (600 - 1000)$ MeV

f ₀ (600) DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/c)
ππ	dominant	_
$\gamma\gamma$	seen	-

Не укладывается в обычную кварк-антикварковую схему

- •Тетракварк? [arXiv:0810.4640]
- Глюбол? [hep-ph/000713]

Как искать?

Киральная параметризация

 $|M|^{2} \sim 1 + a Y + b Y^{2} + c X + d X^{2} + \cdots$

 $|M|^{2} \sim 1 + aY + bY^{2} + cX + dX^{2} + \cdots$

А.М. Блик *и др.* ЯФ **88**, 123 (2008)

 $a = -0.106 \pm 0.028,$ $b = -0.127 \pm 0.016,$ $c = 0.015 \pm 0.011 \pm 0.014,$ $d = -0.082 \pm 0.017$

И что?!

Резонансная модель

 $A = A_{CA} + A_{\pi\pi}(s_{3}) + A_{\pi\eta}(s_{1}) + A_{\pi\eta}(s_{2})$

При таком рассмотрении появляются члены любых степеней по переменным Х и Ү!

ππ-рассеяние

- Амплитуда действительна при s< $(2m_{\pi})^2$
- При $(2m_{\pi})^2 < s < (2m_K)^2$ мнимая часть $\operatorname{Im}\left\{\frac{1}{A_{\pi\pi}(s)}\right\} \sim \sqrt{1 - \frac{4m_{\pi}^2}{s}}$
- Адлеровксий ноль при $s=s_A=m_{\pi}^2/2$

$\pi\pi$ -рассеяние - σ -мезон

$$A_{\pi\pi}(s) = \kappa \left\{ \frac{m_{\pi}^2}{s - s_A} \left[\frac{2s_A}{m_{\pi}\sqrt{s}} + B_0 + B_1 w(s) + \cdots \right] - i\sqrt{1 - \frac{4m_{\pi}^2}{s}} \right\}^{-1}$$

$$w(s) = \frac{\sqrt{s} - \sqrt{4m_K^2 - s}}{\sqrt{s} + \sqrt{4m_K^2 - s}}$$

$$s \implies |w(s)| \le 1$$

I. Caprini Phys.Rev. **D77**, 114019 (2008)

 $K^+ \rightarrow e^+ \nu_e \pi \pi$

$$B_0 = 7.4$$

 $B_1 = -15.1$

 $\sqrt{s} = (459 - 259i) \,\mathrm{M}$ эВ

 $M_a = 980 \,\mathrm{M}\Im\mathrm{B},$

$$\Gamma_a = 50 \div 100 \,\mathrm{M}\mathfrak{B}$$

- **Точечная связь** $A_{\pi\eta}(s) = g_{\pi\eta'} \frac{1}{s - M_a^2 + iM_a\Gamma(s)} g_{\pi\eta}$ $2\Gamma \Rightarrow B < g_{\pi\eta} < 3\Gamma \Rightarrow B$
- Киральная связь

$$A_{\pi\eta}(s) = \gamma_{\pi\eta'} \frac{\left(p_{\eta}p_{\pi_1}\right)\left(p_{\eta'}p_{\pi_2}\right)}{s - M_a^2 + iM_a\Gamma(s)}\gamma_{\pi\eta}$$
$$6\Gamma \Im B^{-1} < \gamma_{\pi\eta} < 8\Gamma \Im B^{-1}$$

 $SU(3) \Rightarrow \frac{\eta'}{\eta} = \tan \Phi \approx 0.8$

Результаты фита

$$A = A_{\pi\pi} \left(s_{12} \right) + A_{\pi\eta} \left(s_{13} \right) + A_{\pi\eta} \left(s_{23} \right)$$

Параметры модели:

$$\sigma$$
 – *мезон*: *К*
 a_0 – *мезон*: $g_{\pi\eta}, g_{\pi\eta'}$ ИЛИ $\gamma_{\pi\eta}, \gamma_{\pi\eta'}$

Если собственно-энергетическими поправками пренебрегать, то они входят только произведениями $g_{\pi\eta'}$ g $_{\pi\eta}$ или $\gamma_{\pi\eta'}$ $\gamma_{\pi\eta'}$

Результаты фита – точечная связь

SU(3) 5 $g_{\pi\eta}g_{\pi\eta}$, $\Gamma \ni B^2$ -5 SU(3) - 10 -5 10 0 5

к

Br

Результаты фита – точечная связь

Далитц-плот

CL = 0.52 $\kappa = -4.0 \pm 0.3$ $g_{\pi\eta}g_{\pi\eta'} = (0.93 \pm 0.3) \Gamma 3B^2$

Результаты фита – киральная связь

Br

Результаты фита – киральная связь

Далитц-плот

CL = 0.92 $\kappa = -4.0 \pm 0.3$ $\gamma_{\pi\eta} \gamma_{\pi\eta'} = (35 \pm 4) \Gamma \Im B^{-2}$

Обсуждение результатов

Каков вклад в реальную и мнимую часть амплитуды от различных резонансов?

- а₀-мезон дает основной вклад в действительную часть амплитуды.
- Основной вклад в мнимую часть от σ
- •Для описания Br можно обойтись и без σ-мезона

Обсуждение результатов

- Оставляем только а₀ неправильный наклон диаграммы Далитца по переменной Ү.
- Учет σ-резонанса и интерференции исправляет ситуацию

Выводы

- Диаграмма Далитца хорошо описывается в резонансном приближении с участием а₀- и σ-мезонов
- Для описания Br достаточно включения только а₀-мезона, но не получается наклон
- Для правильного описания Далитц-плота <u>необходим</u> учет σ-мезона и интерференции с а₀
- Распад η'→ηπ⁰π⁰ позволяет увидеть σмезон в равной мере как он виден в К_{е4}

В этом распаде нарушается изоспин

Связь с предыдущим распадом:

D.J. Gross et al, Phys.Rev. **D19**, 2188 (1979)

$$\Gamma(\eta' \to 3\pi^0) = (16.8) \sin^2 \lambda \, \Gamma(\eta' \to \eta \pi^0 \pi^0)$$

где $\sin \lambda = \frac{\sqrt{3}}{4} \frac{m_d - m_u}{m_s} \approx 0.02$ - смешивание π^0 - η

Предполагалось, что распределения Далитца плоские

Но это не так!!!

Киральная параметризация

$$\beta = -0.59 \pm 0.18$$

резонансная парамеризация

 $A = \varepsilon_{\sigma} A_{\sigma} \left(s_{12}, s_{13}, s_{23} \right) + \varepsilon_{a} A \left(s_{12}, s_{13}, s_{23} \right)$

- А_{о,а} симметризованные амплитуды из предыдущего распада
- $\epsilon_{\sigma,a}$ параметры нарушения изоспина

N = 74.3 N = 116.9 $\beta = -0.067$ $\beta = -0.64$

$$\varepsilon_a = 0.0036, \quad \varepsilon_\sigma = 0.023$$

24

 $\eta' \rightarrow 3\pi^0$

 ϵ_{σ}

Заключение

- η'→ηππ: хорошо описывается в рамках резонансной модели. Учет σ-мезона необходим
- η'→3π: Также необходим σ-мезон. Нарушение изоспина зависит от канала (для а0-мезона больше)
- η→3π: Получается наклон далитц-плота, но плохо предсказывается ширина