

Изучение СР нарушения в эксперименте DØ

Г. Борисов

Ланкастерский университет, Великобритания

	•		*	*2	
AZ U. of Arizona CA U. of Galitomia, Berkeley U. of Calitomia, Riverside Cal. State U., Frence Lawron Berkeley Net Leb	U. de Eluenos Alles	LAFEX, CBPF, Ro de Janeiro State U. do Ro de Janeiro State U. Paulieta, São Paulo	U. of Alberta McGill U. Simon Fraser U. York U.	U. of Science and Technology of China, Helei	U. de tos Andes, Bogota
FL, Florida State U. IL, Fermilab U. of Ilinois, Chicago Northern Ilinois U. Northwestern U.			.		۲
N Indiana U. U. of Notov Danne Purdsa U. Calamet Roma State U. S. U. of Kanase Kanase State U. A. Louavinan Tech U. MD U. of Maryland Mit Boston U. Northeastern U.	Charles U., Prague Czech Tech, U., Prague Academy of Sciences, Prague	LPG, Connord-Fernand IDN, INDP3, Crenoble CPPM, INDP3, Naresille LAL, INDP3, Oney LPM-F, INDP3, Oney DAPMANJIP, CEA, Sackey (Refs, Bitasbourg IPN, INDP3, Villautionm	U. San Francisco de Quée	U, of Aachen Boorn U. U, of Fritburg U, of Masinz Losting Materializes U., Manuch U, of Weppertal	Parjah U. Chandigarh Dethi U.; Dehi Tata trattalan, Mantasi
MI U. of Michigan				14 M	
Microgue State U MC U of Metensity NE U, of Netresida NJ Princeton U, VY Columbia U U of Rochester SUNY, Dafalo SUNY, Story Brook Brochester Nat. Lab	IneL	10 Col	liabor	ation	
Microgues State U St. J. of Neisensiege NE. U. of Neisensiege NE. V. of Neisensie U. of Neisensie SUNY, Sonry Brook Brookhaven Nat. Lab. DK. Langeton U. U. of Oktohoma Oktahoma State U.)Ø Col (•)			
Microgues State U WE U of Netraske NE U of Netraske NE U of Netraske NY Columbia U U of Rocheater SUNY, Story Brook Brookhaven Nat. Lab. DK Langeton U. U of Ottoberna Oktahoma State U. RI: Devien U. X Southern Methodist U. U. O Taxas at Antigeton Pilor U.		NO CO	CINVEBTAY, Mexico City	FOMARPIEF, Amatendam L. et Anstendam / NRDEF L. et Anstendem / NRDEF	JNR Dates TEP Meloce Mesoce Soft L PET & Potence PET States
Microgues State U WE U, of Nebrasika NE U, of Nebrasika NY Columbia U, WY Columbia U, U, of Robehater SUINY, Shorey Brook Brookhasen Nat. Lab. Okanoma U, U, of Oklahoma Oklahoma State U, U, of Chilahoma Oklahoma State U, U, of Chilahoma Oklahoma State U, U, of Tissas at Arlington Pico U, N, U, of Washington		NOL Kores U. Stord Burgfyunfaun U. Busan	CINVESTAL Mesico City	FORMARDEF, Anstandam L. of Anstandam / NRDEF L. of Neinegen / NRDEF	Jakit, Dutres TEP: Noncore Missoure State II. InfEP: Professione Philip, 01. Presentourg

Асимметрия между материей и анти-материей

- Превышение числа барионов над анти-барионами одна из самых больших загадок связанных с образованиеем нашей вселенной;
- Не описывается существующими теориями;
- СР нарушение, приводящее к различным свойствам частиц и анти-частиц обеспечивает механизм генерации наблюдаемого превышения числа барионов над анти-барионами, за счет более быстрого распада анти-барионов;

СР нарушениие и Стандартная Модель

• Единствееный источник СР нарушения в Стандартной Модели – комплексная матрица смешивания кварков (СКМ matrix):

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

$$V_{ub} \neq V_{ub}^*; V_{td} \neq V_{td}^* \Rightarrow \text{CPV}$$

СР нарушение и Стандартная Модель

• Условие унитарности (V[†]V=1), и возможность переопределить фазы кварковых состояний приводит к тому что СКМ матрица определяется тремя действительными параметрами и одним комплексным:

$$\begin{split} V_{\rm CKM} = & \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} \end{split}$$

• Этот единственный комплексный параметер достаточен для описания все известные явления связанные с СР нарушением. 4

Унитарный треугольник

- Один из недавних триумфов Стандартной Модели проверка одного из условий унитарности ("Унитарный треугольник"): $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
- Все СР-сохраняющие и СР-нарушающие иземерения подтверждают это соотношение;

Необходимость новой физики

- Несмотря на весь успех СМ в описании СР явлений, величина СР нарушения предсказываемого стандартной моделью гораздо меньше (~15 порядков), чем необходимо для объяснения наблюдаемой асимметрии между материей и анти-материей;
- Сам факт нашего существования требует дополнительных источников СР нарушения выходящих за рамки СМ;
- Поиск этих источников является одной из главных задач текущих и будущих экспериментов;

- Наиболее перспективной стратегией поиска новых явлений является изучение процессов, в которых СМ предсказывает маленькие СР эффекты, в то время как расширения СМ могут приводить к значительной величине СР нарушения;
- Наблюдение отклонения от нулевого уровня гораздо легче заметить и измерить;

Эта стратегия поиска осуществляется в DØ эксперименте

Основные элементы для В-физики:

- Мюонная система;
- Мюонный триггер;
- Соленоид + тороид;
- Полярности магнитов регулярно меняются;
- Трековые детекторы включая высокоточный силиконовый детектор;
- Большой аксептанс вплоть до |η|~2;

DØ Мюонная система

- Большой аксептанс |η|< 2.2;
- Отличный триггер;
- Подавление космических мюонов;
- Сильное подавление фона;
- Локальное измерение заряда и импульса мюона;
- Высокая чистота мюонной идентификации;

Светимость

Полученные результаты соответствуют набранной светимости 2.8 fb⁻¹

13 Марта 2008

Г. Борисов, Изучение СР асимметрии в эксперименте D0

Анализ $B_s \rightarrow J/\psi \phi$ распада

Внимание: много букв "ф", "ф" употребляется в различном контексте

13 Марта 2008

Система В, мезона

- В отличии от других систем нейтральных мезонов, *B_s* сильно смешана;
- Два физических состояния B_s^H (тяжелый) and B_s^L (легкий) имеют различные массы и времена жизни:

$$\Delta M_{s} = M_{H} - M_{L} \approx 2|M_{12}|$$
$$\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} \approx 2|\Gamma_{12}|\cos\phi_{s}$$
$$\phi_{s} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$
$$\overline{\Gamma}_{s} = \frac{1}{2}(\Gamma_{L} + \Gamma_{H})$$

 M_{12} и Γ_{12} – элементы комплексной массовой матрицы (*M-i Г/2*) B_s системы;

*ф*_s- СР нарушающая фаза;

 Γ_s , $\Delta \Gamma_s$, ΔM_s и ϕ_s – 4 параметра описывающие B_s систему

Распад $B_{c} \rightarrow J/\psi \phi$

- Смесь СР-четного и СР-нечетного конечных состояний;
- Описываетсе 3 комплексными амплитудами: $A_0, A_{\parallel}, A_{\perp};$
- Каждой амплитуде соответсвует различное угловое распределение продуктов распада;
- СР-четный B_s распадается через A_0 , A_{\parallel} амплитуды; СР-нечетное B_s состояние распадается через A_{\perp} ;
- Эволюция амплитуд во времени различна, если B_s^L и B_s^H имеют различное время жизни;
- В случае СР нарушения, эволюция амплитуд во времени для $B_s(0)$ и $\overline{B}_s(0)$ также различается;
- Мы можем измерить время жизни B_s^L и B_s^H по-отдельности, и СР-нарушающую фазу изучая эволюцию во времени амплитуд распада $B_s \rightarrow J/\psi \phi$ для $B_s(0)$ и $\overline{B}_s(0)$;

В Стандартной Модели СР нарушение должно быть очень маленьким для B_s→J/ψ φ:

$$\phi_s^{SM} = -2\beta_s = 2\arg\left(-\frac{V_{tb}V_{ts}^*}{V_{cb}V_{cs}^*}\right) = -0.04 \pm 0.01$$

• Вклад новой физики может существенно изменить его величину. В общем виде:

$$\phi_s = \phi_s^{SM} + \phi_s^{\Delta}$$

 Ненулевая величина *ф*_s будет четким и недвусмысленным указанием вклада новой физики;

- Экслюзивное выделение распада $B_s \rightarrow J/\psi \phi$;
- Точное измеререние времени жизни B_s;
- Угловые распределения;
- Определение начального состояния B_s ;
- Функция правдоподобия включающая угловые переменные, массу *B_s* и его время жизни;

- Выделение $B_s \rightarrow J/\psi \phi$ распада
- Используются распады Ј/ψ→µ⁺µ⁻ и φ →K⁺K⁻;

 Так как мы используем эксклюзивный распад, разрешение по времени жизни очень хорошее: σ(сτ) ≈ 25 µm;

• Для начального B_s(0) состояния, распределение по углам и времени может быть представлно как:

$$\frac{d^4 \Gamma(B_s(t) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-))}{dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi} \propto \sum_k O^{(k)}(t)g^{(k)}(\theta,\psi,\varphi)$$

• Для начального **B**_s(0) состояния, распределение по углам и времени может быть представлено как:

 $\frac{d^4 \Gamma(\overline{B}_s(t) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-))}{dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi} \propto \sum_k \overline{O}^{(k)}(t)g^{(k)}(\theta,\psi,\varphi)$

• Угловые функции $g^{(k)}(\theta,\psi,\varphi)$ не отличаются для $B_s(0)$ и $\overline{B}_s(0)$

13 Марта 2008

$$\frac{d^{4}\Gamma(B_{s}(t) \rightarrow J/\psi(\rightarrow \mu^{+}\mu^{-})\phi(\rightarrow K^{+}K^{-})}{dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi} \propto dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi$$

$$2\cos^{2}\psi(1-\sin^{2}\theta\cos^{2}\varphi) \cdot |A_{0}(t)|^{2} + \sin^{2}\psi(1-\sin^{2}\theta\sin^{2}\varphi) \cdot |A_{\parallel}(t)|^{2} + \sin^{2}\psi\sin^{2}\theta \cdot |A_{\perp}(t)|^{2}$$

$$+(1/\sqrt{2})\sin2\psi\sin^{2}\theta\sin2\varphi \cdot \Re(A_{0}^{*}(t)A_{\parallel}(t)) + (1/\sqrt{2})\sin2\psi\sin2\theta\cos\varphi \cdot \Im(A_{0}^{*}(t)A_{\perp}(t)) + (1/\sqrt{2})\sin2\psi\sin2\theta\sin\varphi \cdot \Im(A_{\parallel}^{*}(t)A_{\perp}(t))$$

• Эволюция амплитуд во времени для B_s(0) (верхний знак) и для B_s(0) (нижний знак):

$$\begin{aligned} |A_0(t)|^2 &= |A_0(0)|^2 \left[\mathcal{T}_+ \pm e^{-\overline{\Gamma}t} \sin \phi_s \, \sin(\Delta M_s t) \right], \\ |A_{\parallel}(t)|^2 &= |A_{\parallel}(0)|^2 \left[\mathcal{T}_+ \pm e^{-\overline{\Gamma}t} \sin \phi_s \, \sin(\Delta M_s t) \right], \\ |A_{\perp}(t)|^2 &= |A_{\perp}(0)|^2 \left[\mathcal{T}_- \mp e^{-\overline{\Gamma}t} \sin \phi_s \, \sin(\Delta M_s t) \right], \\ \text{where} \\ \mathcal{T}_{\pm} &= (1/2) \left[(1 \pm \cos \phi_s) e^{-\Gamma_L t} + (1 \mp \cos \phi_s) e^{-\Gamma_H t} \right]. \end{aligned}$$

СР-нарушающая фаза *ф*_s входит с коэффициентом sin(*ΔM_s*·*t*), поэтому точное измерение времени жизни очень важно для этого анализа;

Эволюция амплитуд во времени (продолжение)

$$\begin{aligned} \Re(A_0^*(t)A_{\parallel}(t)) &= |A_0(0)||A_{\parallel}(0)|\cos(\delta_2 - \delta_1)[\mathcal{T}_+ \\ &\pm e^{-\overline{\Gamma}t}\sin\phi_s\,\sin(\Delta M_s t)], \end{aligned}$$

 $\Im(A_0^*(t)A_{\perp}(t)) = |A_0(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t}(\pm\sin\delta_2\cos(\Delta M_s t) \mp \cos\delta_2\sin(\Delta M_s t)\cos\phi_s) - (1/2)(e^{-\overline{\Gamma}Ht} - e^{-\overline{\Gamma}Lt})\sin\phi_s\cos\delta_2],$

$$\Im(A_{\parallel}^{*}(t)A_{\perp}(t)) = |A_{\parallel}(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t}(\pm\sin\delta_{1}\cos(\Delta M_{s}t) \mp \cos\delta_{1}\sin(\Delta M_{s}t)\cos\phi_{s}) - (1/2)(e^{-\overline{\Gamma}Ht} - e^{-\overline{\Gamma}Lt})\sin\phi_{s}\cos\delta_{1}],$$

- Здесь: $\delta_1 \equiv \arg \{ A^*_{\parallel}(0) A_{\perp}(0) \}; \quad \delta_2 \equiv \arg \{ A^*_{0}(0) A_{\perp}(0) \}$ СР сохраняющие сильные фазы;
- Нормализация при t=0: $|A_0(0)|^2 + |A_{\parallel}(0)|^2 + |A_{\perp}(0)|^2 = 1$

13 Марта 2008

состояния

- Эволюция амплитуд различна для $B_s(0)$ и $\overline{B}_s(0)$
- Начальное состояние B_s мезона определяется при помощи техники flavour tagging;
- Для этого, выбираются различные характеристики события со стороны противоположной изучаемому В_s мезону (opposite-side tagging), или с той же стороны что и изучаемый B_s meson (same-side tagging);
- Важно, чтобы эти характеристики отличались для $B_s(0)$ и $\overline{B}_s(0)$.

Свойства события для flavor

tagging

С противоположной стороны:

- Заряд вторичного лептона (мюон или электрон);
- Заряд вторичной вершины;
- **Р_t- взвешенный заряд всех треков** с противоположной стороны;

С той же стороны:

- Заряд трека наиболее близкого к направлению В.;
- **Р_t- взвешенный заряд всех треков** из первичной вершины;

Все свойства комбинируются в одну переменную "d";

Качество таггинга

• Качество таггинга описывается переменной "dilution":

$$\boldsymbol{D} = \frac{\boldsymbol{N}_{cor} - \boldsymbol{N}_{wr}}{\boldsymbol{N}_{cor} + \boldsymbol{N}_{wr}}$$

- N_{cor} Число правильных тагов;
- N_{wr} Число неправильных тагов;
- Калибровка D(d) осуществляется при помощи МС событий;
- Согласие между данными и МС проверяется при помощи В[±] → J/ψ K[±] событий, где начальное состояние известно;

Dilution в зависимости от переменной таггинга |d| для $B^{\pm} \rightarrow J/\psi \ K^{\pm}$ событий в данных и MC

• Эквивалентаня мощность таггинга: $P = \varepsilon \cdot D^2 = (4.68 \pm 0.54)\%$

- Мы осуществляем фитирование функции правдоподобия, которая зависит от времени жизни, массы (J/ψ φ), и 3 углов распада;
- В целом фитирование осуществляется по 32 параметрам, описывающим сигнал, фон, разрешение по массе и по времени жизни:

$$L = \prod_{i=1}^{N} \left[f_{sig} \cdot F_{sig}^{i} + (1 - f_{sig}) \cdot F_{bck}^{i} \right]$$

- *f*_{sig} доля сигнала в отобранных событиях;
- F_{sig} (F_{bck}) распределение сигнала (фона) по массе, времени жизни и 3 углам распада;

- Мы используем $\Delta M_s = 17.77 \pm 0.12 \text{ ps}^{-1}$ (CDF)
- Правдоподобие имеет двухкратную неопределенность:
 - $\Delta\Gamma > 0$, $\cos(\phi_s) > 0$, $\cos(\delta_1) > 0$, $\cos(\delta_2) < 0$;
 - $-\Delta\Gamma < 0, \cos(\phi_s) < 0, \cos(\delta_1) < 0, \cos(\delta_2) > 0;$
- Фазы $\delta_1 \ \delta_2$ измерены в эксперименте BaBar в аналогичном распаде $B_d \rightarrow J/\psi$ K^{*} (hep-ex/0704.0522). Решение $\delta_1 < 0, \ \delta_2 > 0$ более предпочтительно как экспериментально, так и теоретически;
- Предполагая приблизительную SU(2) симметрию между d и s кварками, мы ограничиваем δ₁, δ₂ Гауссианами со средними: δ₁= -0.46; δ₂= 2.92 измеренными в распаде B_d→J/ψ K*, и с шириной Гауссиан π/5, учитывающей возможное нарушение SU(2) симметрии;

• Три возможных сценария:

- СР нарушающая фаза *ф*_s свободный параметр;
- *φ_s*≡ −0.04 (предсказание СМ);

 $- \Delta \Gamma_{\rm s} = \Delta \Gamma_{\rm s}^{\rm SM} |\cos \phi_{\rm s}|;$

	free ϕ_s	$\phi_s \equiv \phi_s^{SM}$	$\Delta \Gamma_s^{th}$
$\overline{\tau}_s$ (ps)	1.52±0.06	1.53±0.06	1.49 ± 0.05
$\Delta \Gamma_s \text{ (ps}^{-1})$	0.19±0.07	0.14 ± 0.07	0.083 ± 0.018
$ A_{\perp}(0) $	0.41±0.04	0.44±0.04	0.45 ± 0.03
$ A_0 ^2 - A_{\parallel} ^2$	0.34±0.05	0.35±0.04	0.33 ± 0.04
δ_1	-0.52 ± 0.42	-0.48±0.45	-0.47 ± 0.42
δ_2	3.17±0.39	3.19±0.43	3.21 ± 0.40
ϕ_s	$-0.57^{+0.24}_{-0.30}$	$\equiv -0.04$	-0.46 ± 0.28
$\Delta M_s \ (\mathrm{ps}^{-1})$	≡ 17.77	≡ 17.77	≡ 17.77

Контурный плот

- Контуры соответствуют δ(-2 ln L) = 2.30 (CL = 0.683) и 4.61 (CL = 0.90);
- Размер креста соответствует $\delta(-2 \ln L) = 1$.

Сканирование правдоподобия показывает четкие минимумы со значимостью > 2.5σ как для φ_s так и для ΔГ_s:

- Для проверки совместимости со стандартной моделью, мы осуществили 2000 МС псевдоэксперимента с исходным значением *φ_s* = -0.04 (предсказание СМ);
- Вероятность наблюдать $\phi_s \leq -0.57$ составляет 6.6%

Систематические

неопределенности

Source	$ar{ au}_s$ (ps)	$\Delta \Gamma_s \text{ (ps}^{-1})$
Acceptance	±0.003	± 0.003
Signal mass model	-0.01	+0.006
Flavor purity estimate	± 0.001	± 0.001
Background model	+0.003	+0.02
ΔM_s input	± 0.01	± 0.001
Total	± 0.01	+0.02, -0.01

Source	$ A_{\perp}(0) $	$ A_0(0) ^2 - A_{ }(0) ^2$	ϕ_s
Acceptance	± 0.005	±0.03	± 0.005
Signal mass model	-0.003	-0.001	-0.006
Flavor purity estimate	± 0.001	± 0.001	± 0.01
Background model	-0.02	-0.01	+0.02
ΔM_s input	± 0.001	± 0.001	+0.06, -0.01
Total	+0.01, -0.02	±0.03	+0.07, -0.02

• Мы получили:

 $\phi_s = -0.57^{+0.24}_{-0.30} \text{ (stat)}^{+0.07}_{-0.02} \text{ (syst)}$ $\Delta \Gamma_s = 0.19 \pm 0.07 \text{ (stat)}^{+0.02}_{-0.01} \text{ (syst)} \text{ ps}^{-1}$ $\bar{\tau}(B_s^0) = 1.52 \pm 0.05 \pm 0.01 \text{ ps}$

 $-1.20 < \phi_s < 0.06$, $0.06 < \Delta \Gamma_s < 0.30 \text{ ps}^{-1}$ at 90% C.L.

- Вероятность наблюдения такой величины ϕ_s в СМ составляет 6.6%;
- Для СМ величины φ_s≡-2β_s=-0.04 мы получили:

 $\Delta \Gamma_{\rm s} = 0.14 \pm 0.07 \,(\text{stat}) \stackrel{+0.02}{_{-0.01}} \,(\text{syst}) \,\text{ps}^{-1}$ $\bar{\tau}(B_{\rm s}^{0}) = 1.53 \pm 0.06 \pm 0.01 \,\text{ps}$

13 Марта 2008

• Для случая $\Delta \Gamma_s^{\text{th}} = \Delta \Gamma_s^{\text{SM}} |\cos \phi_s|$:

 $\phi_s = -0.46 \pm 0.28 \,(\text{stat})_{-0.02}^{+0.07} \,(\text{syst})$ $\bar{\tau}(B_s^0) = 1.53 \pm 0.06 \pm 0.01 \,\text{ps}$

13 Марта 2008

• Предыдущий результат DØ, являющийся комбинацией различных измерений:

$$\phi_s = -0.70^{+0.47}_{-0.39}$$

(с четырех-кратной неопределенностью);

– Phys. Rev. D76, 057101 (2007)

Недавний результат CDF в том же распаде В_s→J/ψ φ:

 $-1.20 < \phi_s < -0.40$ at 68% CL

- результат представлен в DØ конвенции знаков, которая противоположна конвенции CDF;
- arXiv: hep-ex/0712.2397;

Заключение

- Эксперименты на Теватроне дают интересные результаты по СР нарушению;
- Эти результаты дополнительны измерениям на Вфабриках и связаны с сектором В_s мезона, который не доступен на В-фабриках;
- Мы ожидаем существенного увеличения статистики к концу RunII Теватрона;
- Будущие измерения СР нарушения на Теватроне могут принести неожиданные и яркие результаты;

BACKUP SLIDES

13 Марта 2008

CPV and B Mesons

- **B mesons ideal place to study CPV:**
 - Direct access to small elements of mixing matrix;
 - Can be sensitive to the new physics;
 - Neutral B mesons continuously transforming between matter and antimatter state (oscillate);
- **B** mesons with *u* and *d* quark are extensively studied at b-factories (BaBar and Belle experiments);
- **B**_s meson (bound state of *b* and *s* quarks) can currently be studied only at Tevatron;

- Standard Model predicts the following values of experimental observables for B_s system (A. Lenz, U. Nierste, hepph/0612167):
- Mass difference: $\Delta M_s^{SM} = (19.30 \pm 6.74) \, \mathrm{ps}^{-1}$
- Lifetime difference: $\Delta \Gamma_s^{SM} = (0.096 \pm 0.039) \, \text{ps}^{-1}$
- Ratio: $\Delta \Gamma_s^{SM} / \Delta M_s^{SM} = (49.7 \pm 9.4) \times 10^{-4}$
- **CP violating phase:** $\phi_s^{SM} = (4.2 \pm 1.4) \times 10^{-3}$
- **CP** violating phase in $B_s \rightarrow J/\psi \phi$ decay: $-2\beta_s = -0.04 \pm 0.01$

Notice that the CP violating phases for Bs system is predicted to be very small in the Standard Model

- The SM prediction can be significantly modified in the presence of new physics;
- It changes the M_{12} element of mass matrix:

$$\boldsymbol{M}_{12} = \boldsymbol{M}_{12}^{SM} \cdot \boldsymbol{\Delta}_{s}; \quad \boldsymbol{\Delta}_{s} = \left| \boldsymbol{\Delta}_{s} \right| \boldsymbol{e}^{i \phi_{s}^{\Delta}}$$

• The Γ_{12} element is determined by the tree diagrams and is not modified by the new physics;

- In the presence of new physics, the experimental observables are modified as:
- Mass difference: $\Delta M_s = \Delta M_s^{SM} |\Delta_s|$
- Lifetime difference: $\Delta \Gamma_s = (0.096 \pm 0.039) \, \text{ps}^{-1} \cdot \cos \phi_s$
- Ratio: $\Delta \Gamma_s / \Delta M_s = (49.7 \pm 9.4) \times 10^{-4} \cdot \cos \phi_s / |\Delta_s|$
- **CP violating phase:** $\phi_s = \phi_s^{SM} + \phi_s^{\Delta}$
- CP violating phase in $B_s \rightarrow J/\psi \phi$ decay: $-2\beta_s + \phi_s^{\Delta}$

The CP violating phases for B_s system can be significantly modified by the contribution of the new physics, since the SM prediction is expected to be small

Experimental constraints

- $\Delta_s = 1 \text{Standard Model};$
- Red: $\Delta M_s = 17.77 \pm 0.12 \text{ ps}^{-1}$ (CDF);
- Yellow: $\Delta \Gamma_s = 0.17 \pm 0.1 \text{ ps}^{-1} (D\emptyset);$
- Blue: $A_{SL}^{s} = (-8.8 \pm 7.3) \times 10^{-3}$ (combination of DØ results with $A_{SL}^{d} = SM$ value);
- Forward and backward solid wedges – constraint on φ_s from $\Delta\Gamma_s$ measurement;

Muon Triggers

- Single inclusive muons
 - | η |<2.0, p_T > 3,4,5 GeV
 - Muon + track match at Level 1
 - No direct lifetime bias
 - Still could give a bias to measured lifetime if cuts on decay length are imposed offline
 - Prescaled or turned off depending on inst. lumi.
 - B physics triggers at all lumi's
 - Extra tracks at medium lumi's
 - Impact parameter requirements
 - Associated invariant mass
 - Track selections at Level 3

Dimuons: other muon for flavor tagging

- e.g. at 50·10⁻³⁰ cm⁻²s⁻¹
 - 20 Hz of unbiased single μ
 - **1.5 Hz of IP+μ**
 - 2 Hz of dimuons
- No rate problem at L1/L2

