

Феноменология односпиновых эффектов в образовании адронов при высоких энергиях

В.В. Абрамов

Институт физики высоких энергий, Протвино, Россия

Семинар ИФВЭ,

Абрамов В.В., 13 ноября 2008

План доклада

- Введение
- Механизм односпиновых эффектов
- Зависимость от кинематических переменных
- Зависимость от квантовых чисел адронов
- Зависимость от атомного веса налетающей частицы
- □ Данные для hh, hA, AA и /А-соударений
- Оценка масс и g-факторов составляющих кварков
- Обсуждение перспектив дальнейших исследований
- Заключение

Семинар ИФВЭ,

Абрамов В.В., 13 ноября 2008

Спин является фундаментальной квантовой характеристикой частиц и мощным инструментом для их исследования.

- $A^{\uparrow} + B \rightarrow C + X$ {односпиновая асимметрия, $A_N(p_T, x_F, \sqrt{s})$ }.
- A + B \rightarrow C[↑] + X {поляризация частицы C, $P_N(p_T, x_F, \sqrt{s})$ }.

В т.в. КХД односпиновые эффекты малы: $A_N \approx \alpha_S m_Q / E_Q \le 1\%$. $\alpha_S \approx 0.2 - 0.5$; токовая масса $m_Q \approx 5-10$ МэВ; $E_Q \approx P_T \approx 1$ ГэВ/с.

G.Kane, J.Pumplin and W.Repko, Phys.Rev.Lett. 41, 1689 (1978).

Наблюдаемые эффекты много больше предсказаний т.в. КХД.

Предлагается новый квазиклассический механизм ДЛЯ односпиновых процессов, который основан на взаимодействии эффективным составляющих кварков C массивных хромомагнитным полем глюонных струн (микроскопический эффект Штерна-Герлаха). Прецессия спина кварка в цветовом осцилляции К поляризации приводит адронов поле B зависимости от кинематических переменных.

Подразумевается, что в согласии с принципом соответствия Бора, существует квазиклассическое описание, аналогичное квантовому, которое сохраняет основные зависимости односпиновых эффектов от кинематических переменных и типа взаимодействующих адронов.

Кинематика в односпиновых процессах

- $\mathbf{p}^{\uparrow} + \mathbf{p}(\mathbf{A}) \rightarrow \mathbf{c} + \mathbf{X}$
- $\mathrm{Ed}^{3}\sigma/\mathrm{d}^{3}p = \sigma_{0} + \mathbf{S} \cdot \mathbf{n}\sigma_{1} = \sigma_{0}(1 + A_{\mathrm{N}}P\cos\varphi)$
- Р поляризация пучка вдоль вектора спина S
- $\mathbf{n} \sim \mathbf{P}^{\mathbf{A}} \times \mathbf{P}^{\mathbf{C}}$ нормаль к плоскости реакции
- А_N анализирующая способность

Взаимодействие кварка с полем КХД-струны

Продольное хромоэлектрическое **E**^a и циркулярное хромомагнитное **B**^a поля КХД-струны.

 $\mu^{a}_{Q} = sg^{a}_{Q}g_{s}/2M_{Q}$ –хромомагнитный (1) момент составляющего кварка.

Color flux tube fields B and E. A.B.Migdal, S.B.Khohlachev, 1985 JETP Lett. 41, 194 (1985).

Зависимость поля от расстояния r от оси струны: $E^{(3)}_{Z} = -2\alpha_{s} \nu / \rho^{2} \exp(-r^{2}/\rho^{2}),$ (2)

$$\mathbf{B}^{(2)}_{\phi} = -2\alpha_{\rm s} \, \mathbf{v} \, r/\rho^3 \, \exp(-r^2/\rho^2), \tag{3}$$

где v – число кварков, $\rho = 1.25 R_C \approx 2.08 \ \Gamma \Rightarrow B^{-1}$, $R_C^{-1} \approx 0.6 \ \Gamma \Rightarrow B$, $R_C -$ радиус конфайнмента, $\alpha_s = g_s^{-2}/4\pi$.

Действие сил Штерна-Герлаха на кварк в поле КХД струны

$$f_{x} \approx \mu_{x}^{a} \frac{\partial B_{x}^{a}}{\partial x} + \mu_{y}^{a} \frac{\partial B_{y}^{a}}{\partial x}$$
(4)
$$f_{y} \approx \mu_{x}^{a} \frac{\partial B_{x}^{a}}{\partial y} + \mu_{y}^{a} \frac{\partial B_{y}^{a}}{\partial y}$$
(5)

Кварк из наблюдаемого адрона С, испытывающий действие сил Ш-Г и прецессию спина мы будем называть кварком-пробником, измеряющим поле **В**^а.

$$\mathbf{B^a} \sim [2 + 2\lambda - 3\tau \lambda]$$

 Эффективное хромомагнитное поле является суперпозицией полей струн, создаваемых кварками (антикварками)-спектаторами, которые не входят в состав наблюдаемого адрона.

Односпиновые эффекты – результат действия сил типа Штерна-Герлаха: (М.Рыскин, ЯФ 48(1988)1114.)

Прецессия спина кварка в хромомагнитном поле струн

>Ларморова прецессия спина кварка ξ в поле $\mathbf{B}^{\mathbf{a}} \approx 2\alpha_{s} \mathbf{v} \mathbf{r}/\rho^{3}$:

$$d\xi/dt \approx a[\xi B^a] + b(vB^a)[\xi v] + d[\xi [E^a v] \quad (BMT-eq.)$$
(6)

$$a = g_s (g_Q^a - 2 + 2M_Q/E_Q)/2M_Q \quad (M_U \approx M_D \approx 0.3 \ \Gamma \Rightarrow B)$$
 (7)

$$b = g_s(g_Q^a - 2) \cdot E_Q / (E_Q + M_Q) / 2M_Q; \quad g_s = \pm \sqrt{4\pi \alpha_s} \approx \pm 3.7;$$
 (8)

$$d = g_s \{g^a_Q - 2E_Q / (E_Q + M_Q)\} / 2M_Q$$
(9)

ВМТ-уравнение выведено в квазиклассическом приближении. Импульс частицы не должен значительно меняться на расстоянии порядка длины волны \hbar/p . Ларморов радиус $\mathbf{R} = \mathbf{p}/\mathbf{g}_{s}\mathbf{B}^{a} \gg \hbar/p$ или $\mathbf{p} \gg (2\mathbf{g}_{s}\alpha_{s}\mathbf{v})^{1/2}/\rho \approx 0.6$ ГэВ/с. Вкладами ~ b и d мы пренебрегаем, т.к. при высоких энергиях в области фрагментации приближенно $\mathbf{v} \perp \mathbf{B}^{a}, \mathbf{v} \parallel \mathbf{E}^{a},$ где \mathbf{v} – скорость кварка.

Прецессия спина кварка в хромомагнитном поле струн

>Ларморова прецессия спина кварка ξ в поле **B**^a $\approx 2\alpha_s v r/\rho^3$:

$$d\xi/dt \approx a[\xi B^a]$$
 (BMT-уравнение) (9)

 $a = g_s(g_Q^a - 2 + 2M_Q/E_Q)/2M_Q \quad (M_U \approx M_D \approx 0.3 \ \Gamma \Rightarrow B)$ (10)

 $\Delta \mu^{a}_{Q} = (g^{a}_{Q} - 2)/2$ (аномальный хромомагнитный момент кварка)

Спонтанное нарушение киральной симметрии: кварк получает дополнительную динамическую массу $\Delta M_Q(q)$ и $\Delta \mu^a_Q(q)$. Инстантонная модель: $\Delta \mu^a_Q \approx -0.2$ (Кочелев); $\Delta \mu^a_Q \approx -0.744$ (Дьяконов).

При энергии и и d-кварков выше - $M_Q/\Delta\mu^a_Q \approx 0.4 \ \Gamma \Rightarrow B$ знак a и направление прецессии спина кварка меняются.

Аномальный хромомагнитный момент кварка в инстантонной модели

$$\Delta \mu_{a} = -\frac{\pi^{3} n_{c} \overline{\rho}^{4}}{2\alpha_{s}(\overline{\rho})} \approx -0.2, \qquad (11)$$

Где $\tilde{\rho}$ = 1.6 ГэВ-1 – средний размер инстантона, и

 $n_c = \langle 0 | \alpha_S G^a{}_{\mu\nu} G^a{}_{\mu\nu} | 0 \rangle$ определяется величиной глюонного конденсата. N.I.Kochelev, Phys.Lett. B426, 149(1998).

$$\Delta \mu_{a} = -\frac{\pi}{\alpha_{s}} (M_{Q} \,\overline{\rho})^{2} \,\frac{N_{c}}{N_{c}^{2} - 1} \approx -0.744, \tag{12}$$

Где N_C =3 - число цветов, M_Q=0.345 ГэВ/с² - динамическая масса кварка при нулевой виртуальности, $\tilde{\rho} = 1.67$ ГэВ⁻¹, $\pi/\alpha_s \approx 6$. Средний размер инстантона - $\tilde{\rho} = 0.35$ Фм.

D.Diakonov, Prog.Part.Nucl.Phys. 51, 173 (2003).

Прецессия спина частицы (s=1/2) в магнитном поле

 $\xi^1 = M\xi^0$, (эволюция поляризации в магнитном поле) (13)

$$M = \frac{1}{B^2} \begin{pmatrix} B_y^2 \cos(ks) + B_x^2 & B_x B_y [1 - \cos(ks)] & -B_y B \sin(ks) \\ B_x B_y [1 - \cos(ks)] & B_x^2 \cos(ks) + B_y^2 & B_x B \sin(ks) \\ B_y B \sin(ks) & -B_x B \sin(ks) & B^2 \cos(ks) \end{pmatrix}, \quad (14)$$

where k = aB/v and s is a path length in the field (ds = v dt).

 $\vec{\xi}^0 = (0, \xi_y^0, 0),$ (начальное значение поляризации) (15)

$$\vec{\xi}^{1} = \frac{\xi_{y}^{0}}{B^{2}} \left(B_{x} B_{y} [1 - \cos(ks)], \ B_{x}^{2} \cos(ks) + B_{y}^{2}, \ -B_{x} B \sin(ks) \right).$$
(16)

$$\xi_y^1 = \xi_y^0 \left[\frac{B_x^2}{B^2} \cos(ks) + \frac{B_y^2}{B^2}\right],\tag{27}$$

После усреднения по x,y: $<B_xB_y>=0; <B_xB>=0.$

Действие сил типа Штерна-Герлаха на кварк в хромомагнитном поле

Простая модель циркулярного поля, линейно растущего с $r \leq \rho$:

$$B_{x}^{a} = -B_{0}y/\rho;$$
 $B_{y}^{a} = +B_{0}x/\rho;$ $B_{0} = 2\alpha_{s}v/\rho^{2};$ (v -число струн)
 $f_{x} = \mu_{y}B_{0}/\rho;$ $f_{y} = -\mu_{x}B_{0}/\rho;$ $< f_{y} > = 0;$
 $f_{x} = \mu_{y}^{0}(B_{0}/\rho)[(B_{x}^{a}/B^{a})^{2}\cos\varphi_{A} + (B_{y}^{a}/B^{a})^{2}];$ (18)
После усреднения по сечению струны и азимутальному углу:

$$\delta p_{x} = \int f_{x} dt = \mu^{a} \xi_{y}^{0} / (a\rho) [(1 - \cos \varphi_{A}) / \varphi_{A} + \varphi_{A} / 2], \qquad (19)$$

$$φ_A = 2α_s a/ρ^2 \cdot S/v = ω_A x_A - угол прецессии спина;$$
(20)

где
$$S=S_0x_A - длина$$
 траектории в поле B, $S/v=t$ – время. (21)

$$a = g_s(g^a_Q - 2 + 2M_Q/E_Q)/2M_Q.$$

$$x_A = (x_R + x_F)/2$$
 - скейлинговая переменная. 10.43

Действие сил Штерна-Герлаха на кварк в хромомагнитном поле

Как показывает анализ данных, вклад ~ ϕ_A в (19) незначителен, это означает что $B^2_{v} \ll B^2_{x}$. В дальнейшем этот вклад равен $\varepsilon \phi_A$.

Мы предполагаем, что распределение кварков-спектаторов и создаваемых ими струн сосредоточено в плоскости, образуемой частицей с большим p_T и пучковой частицей. На это указывает наличие корреляций по азимутальному углу для триггерной частицы и частиц струи отдачи при $\Delta \phi \approx \pi$.

$$\delta p_{x} = g^{a}_{Q} \xi^{0}_{y} \left[(1 - \cos \varphi_{A}) / \varphi_{A} + \varepsilon \varphi_{A} \right] / 2\rho / (g^{a}_{Q} - 2 + 2M_{Q} / E_{Q}), \quad (22)$$

где угол прецессии спина равен $\phi_A = \omega_A x_A$, а «частота»

$$ω_A = g_s α_s v S_0 (g^a_Q - 2 + 2M_Q/E_Q)/(M_Q v ρ^2);$$
 $S_0 \approx 1 Φ_M.$ (23)

Безразмерный угол ϕ_A выражается через безразмерную скейлинговую переменную \mathbf{x}_A : $\phi_A = \omega_A \mathbf{x}_A = \omega_A (\mathbf{x}_R + \mathbf{x}_F)/2$. (24)

$A_N \approx \delta P_x \partial/\partial p_T \ln(d^3\sigma/d^3p);$ (Рыскин, 1988) (25)

В модели Рыскина величина $\delta P_x \approx 0.1 \ \Gamma \Rightarrow B/c \ является$ постоянной и зависимость A_N от x_F обусловлена изменениями относительных вкладов в сечение процессов, которые зависят (σ_1) либо не зависят от спина (σ_2) при изменении x_F : $A_N \approx A_N(\sigma_1) \ \sigma_1/(\sigma_1 + \sigma_2)$.

В модели эффективного цветового поля мы имеем динамическое происхождение зависимости A_N или P_N от кинематических переменных (x_A) и квантовых чисел кварков в адронах A, B, C, в частности от g^a -фактора и массы кварка M_Q . Эта зависимость обусловлена микроскопическим эффектом Штерна-Герлаха и прецессией спина составляющих кварков в цветовом поле.

Поляризационные эффекты в поле КХД струн

Окончательный вид уравнений для A_N и P_N учитывает симметрию уравнения относительно перестановки $A \leftrightarrow B$, подавление спиновых эффектов при малых P_T , A-зависимость, зависимость от энергии \sqrt{s} и поляризацию и и d в протоне:

$$A_N \approx C(\sqrt{s}) F(P_T, A) [G(y_A \omega_A) - \sigma(\theta_{cm}) G(y_B \omega_B)], \qquad (28)$$

 $G(\phi_A) = [1 - \cos \phi_A]/\phi_A + \epsilon \phi_A$, прецессия спина и силы Ш-Г. (29)

C
$$(\sqrt{s}) = v_0/(1 - E_R/\sqrt{s}),$$
 (30)

$$F(p_T,A) = \{1 - \exp[-(p_T/p_T^0)^3]\}(1 - \alpha \ln A).$$
(31)

Всего 11 локальных феноменологических параметров: $\omega_A, \omega_B, \epsilon, E_0, E_R, D, \sigma, \alpha, f_0, a_0, p_T^0$. $\alpha = -0.016 \pm 0.011; \quad \epsilon = -0.00419 \pm 0.00022;$

Скейлинговые переменные и

пороговая зависимость

 $x_A = (x_R + x_F)/2 \approx -u/s \approx E_{LAB}^C / E_{LAB}^A \approx (E^C + P_Z^C) / (E^A + P_Z^A)$ (32) x_A – скейлинговая переменная 1

 $x_B = (x_R - x_F)/2 \approx -t/s \approx E_{ALAB}^C / E_{ALAB}^B \approx (E^C - P_Z^C) / (E^B + P_Z^B)$ (33) x_B – скейлинговая переменная 2

Зависимость P_N и A_N от переменных x_A и x_B , а также от энергии адрона в с.ц.м. E_{cm}^C имеет пороговый характер: $y_A = x_A - (E_0/\sqrt{s} + f_0)[1 + \cos\theta_{cm}] + a_0[1 - \cos\theta_{cm}],$ (34)

 $y_B = x_B - (E_0/\sqrt{s} + f_0)[1 - \cos\theta_{cm}] + a_0[1 + \cos\theta_{cm}],$ (35) что подтверждается экспериментально и в основе чего лежит процесс, протекающий на уровне составляющих кварков и прецессия их спинов. V.V.Abramov, Eur.Phys.J.C 14, 427(2000); hep-ph/0111128; Yad.Fiz. 68, 414 (2005); Yad.Fiz. 70, №12 (2007);

$$\omega_{\rm A} = \omega_{\rm A}^0 \{ 1 - 2M_{\rm Q} / [(2 - g_{\rm Q}^{\rm a})E_{\rm Q}] \}, \tag{36}$$

$$\omega_{A}^{0} = g_{s} \alpha_{s} v S_{0} (g_{Q}^{a} - 2) / \{ M_{Q} \rho^{2} c \} \equiv v \omega_{Q}^{0}, \qquad (37)$$

$$E_0 \approx r_g \sum M_Q [1 + (2 - 8f_0)/(2 - g^a_Q)];$$
 (38)

$$\mathbf{r}_{\mathbf{g}} = \operatorname{sign}(\boldsymbol{\omega}^{\mathbf{a}}_{\mathbf{A}}) = \pm 1; \tag{39}$$

 \mathbf{r}_{g} учитывает относительный знак эффективного цветового поля \mathbf{B}^{a} и цветового заряда \mathbf{g}_{s} кварка-пробника, входящего в состав наблюдаемого адрона *C*, а $\sum \mathbf{M}_{Q}$ – *сумма масс кварков в* адроне *C*.

f₀ – феноменологический параметр, учитывающий ферми-движение кварка в протоне.

C (
$$\sqrt{s}$$
) = $v_0/(1 - E_R/\sqrt{s})$;
 (40)

 $v_0 \approx g^a{}_Q D\xi^0{}_y/\{2 \ \rho(2 - g^a{}_Q)\}$;
 (41)

 где $D \approx -\partial/\partial p_T \ln(d^3\sigma/d^3p) - эффективный показатель
 (42)

 падения дифференциального сечения при увеличении p_T .
 (42)

 D = 5.68 ± 0.13 ГэВ^{-1}
 (42)$

$$\xi_y^0 \equiv V(\mathbf{x}_F) \approx \pm \theta(\mathbf{x}_F - \mathbf{x}_0)$$
 - поляризация и и d-кварков, (43)

$$\mathbf{E}_{\mathbf{R}} \approx 4\mathbf{r}_{\mathbf{g}} \mathbf{a}_{\mathbf{R}} \sum \mathbf{M}_{\mathbf{Q}} / (2 - g^{\mathbf{a}}_{\mathbf{Q}}) ; \qquad (44)$$

где $a_R \approx 1/\langle x_R \rangle$ – параметр модели. $a_R = 1.34 \pm 0.16$;

Резонансный характер зависимости $C(\sqrt{s}) = v_0/(1 - E_R/\sqrt{s})$ связан с фокусирующими свойствами циркулярного хромомагнитного поля **B**^a при $r_g > 0$.

Фокусирующая сила Лоренца $\mathbf{F} = \mathbf{g}_{\mathbf{s}}[\mathbf{vB}^{\mathbf{a}}]\mathbf{I}^{\mathbf{a}}$ приводит к увеличению времени нахождения кварка-пробника из регистрируемого адрона в поле струны и к усилению поляризационных эффектов, что соответствует $\mathbf{E}_{\mathbf{R}} > \mathbf{0}$.

Color flux tube fields **B** and **E**. Quark movement in the tube.

При $r_g < 0$ поле B^a дефокусирует (выталкивает) кварки из струны, что соответствует $E_R < 0$ и приводит к уменьшению поляризационных эффектов.

Эффект аналогичен фокусирующему действию магнитного поля на плазму в термоядерных установках типа токомак.

Пример фокусировки кварков в поле В^а

 $\mathbf{p}^{\uparrow} + \mathbf{p}(\mathbf{A}) \rightarrow \pi^{+} + \mathbf{X},$ $r_g = +1$, фокусировка $\omega_A^0 = 1.85$ «частота» $\sqrt{s} < 60 \Gamma_{2}B$ $E_R = 3.31 \pm 0.09$ ΓэВ $\sqrt{s} = 200 \Gamma_{2}B$ \mathbf{r}_{g} = -1, дефокусировка $\omega_{A}^{0} \approx -11$ $1/C(\sqrt{s}) \sim (1-E_R/\sqrt{s});$ $\sqrt{s_0} = 100 \Gamma \Im B$

Пример дефокусировки кварков в поле В^а

- р +p(A) $\rightarrow \Lambda^{\uparrow} + X$, r_g= -1, дефокусировка $\omega^{0}{}_{A} = -2.41$
- $E_R = -2.95 \pm 0.30 \Gamma_{2}B$

Аu+Au $\rightarrow \Lambda^{\uparrow} + X,$ $r_g = + 1, \phi$ окусировка $\omega^0{}_A = +44.78,$ $\sqrt{s_{NN}} = 4.86 \Gamma$ эB; $E_R = +4.805 \pm 0.016 \Gamma$ эB

 $\sqrt{s_0} = 100$ ΓэВ

Правила кваркового $A \equiv P$ счета определяют зависимость «частоты» ω_A^0 от квантовых чисел адронов **A**, **B**, **C**, энергии реакции \sqrt{s} и атомного веса **A** пучковой частицы.

 $\mathbf{B}^{\mathbf{a}} \sim \boldsymbol{\omega}^{\mathbf{0}}_{\mathbf{A}} = \boldsymbol{\omega}^{\mathbf{0}}_{\mathbf{S}} \left[2 + 2\lambda - 3\tau \lambda \right] < \mathbf{0}; \quad \mathbf{P}_{\mathbf{N}} < \mathbf{0};$

Для учета кваркового состава адронов используются кварковые диаграммы. Те из кварков, которые не входят в состав наблюдаемого адрона С, считаются спектаторами, создающими с некоторой вероятностью КХД-струны и дающими свой аддитивный вклад в эффективное хромомагнитное поле **B**^a и частоту осцилляций ω_{A}^{0} . $\lambda = -0.1321 \pm 0.0012$; $\tau = 0.0563 \pm 0.0029_{11.19}$

Кварки- и антикваркиспектаторы из налетающего адрона вносят аддитивный вклад в ω⁰_A, с весами равными λ и 1 соответственно. Спектаторы из мишени имеют дополнительный фактор –τ.

Общий вид формул для q и q кварков-пробников из адрона С:

$$\omega^{q} = \omega^{0}_{Q} \{ \tilde{q}_{new} + \lambda q_{new} - \tilde{q}_{used} - \lambda q_{used} + \lambda q_{A} + \tilde{q}_{A} - \tau (\lambda q_{B} + \tilde{q}_{B}) \}$$
(45)
$$\omega^{\tilde{q}} = \omega^{0}_{Q} \{ \lambda \tilde{q}_{new} + q_{new} - \lambda \tilde{q}_{used} - q_{used} + q_{A} + \lambda \tilde{q}_{A} - \tau (q_{B} + \lambda \tilde{q}_{B}) \}$$
(46)
11.20

Зависимость частоты $\omega^0{}_A$ от энергии \sqrt{s} и атомного веса ядра

При высоких энергиях √s рождение кварков и антикварков увеличивает напряженность хромомагнитного поля.

В налетающем ядре эффективное число кварков равно их числу в трубке с поперечным радиусом, определяемым эффектом конфайнмента:

$$q_{A} = 3(1+f_{N})A_{eff} \sim 3(1+f_{N})A^{1/3}$$
(47)
$$\tilde{q}_{A} = 3f_{N}A_{eff} \sim 3f_{N}A^{1/3}$$
(48)

Подавление вклада новых кварков f_N в v при больших p_T и x_F :

$$\begin{split} f_N &= n_q exp(-W_1/\sqrt{s})(1-X_N)^{n1}, \ n_1 = 1.38 \pm 0.09; \ n_q = 4.52 \pm 0.32; \ (49) \\ X_N &= [(p_T/p_N)^2 + x_F^2 \]^{1/2}; \ p_N = 28 \pm 10 \ \Gamma \Im B/c; \qquad W_1 = 265 \pm 14 \ \Gamma \Im B. \end{split}$$

Для A_1A_2 -соударений вклад новых кварков f_N в число струн v при заданных p_T и x_F имеет вид:

$$f_N = n_q \exp(-W/\sqrt{s})(1-X_N)^n,$$
 (50)

$$X_{\rm N} = [(p_{\rm T}/p_{\rm N})^2 + x_{\rm F}^2]^{1/2};$$
(51)

$$W = W_2 / (A_1 A_2)^{1/6}$$
(52)

$$n = n_2 (A_1 A_2)^{1/6}$$
(53)

$$n_2 = 0.91 \pm 0.37,$$
 $W_2 = 238 \pm 54 \ \Gamma \Im B,$
 $n_q = 4.52 \pm 0.32,$ $p_N = 28 \pm 10 \ \Gamma \Im B/c;$

где A₁ и A₂ – атомные веса сталкивающихся ядер.

Число нуклонов в трубке радиуса $R_a = r_0 A_a^{1/3}$ будет: (54) $A_{eff} = A_1 \{1 - [1 - (A_a/A_1)^{2/3}]^{3/2}\} \approx 7.7 A_1^{1/3}$. (55) Если $A_1 < A_a$, то $A_{eff} = A_1$. Для нуклонов $A_{eff} = 1$. A_a является свободным параметром модели. Фит: $A_a = 11.84 \pm 0.33$; $R_a = r_0 A_a^{1/3} \approx 2.74 \pm 0.03$ Фм, где $r_0 = 1.2$ Фм, A_1 – атомный вес налетающего ядра.

Число нуклонов мишени в трубке радиуса $R_a = r_0 A_a^{1/3}$ будет: $B_{eff} = A_2 \{ 1 - [1 - (A_a/A_2)^{2/3}]^{3/2} \} \approx 7.7 A_2^{1/3}.$ (56) где A_2 – атомный вес ядра мишени.

Эффективное число нуклонов в мишени в случае hA-соударений

Число нуклонов в мишени в трубке радиуса $R_b = r_0 A_b^{1/3}$ будет: $B_{eff} = A_2 \{1 - [1 - (A_b/A_2)^{2/3}]^{3/2}\} \approx 0.61 A_2^{1/3}.$ (57) Если $A_2 < A_b$, то $B_{eff} = A_2$. Для нуклонов $B_{eff} = 1.$ A_b является свободным параметром модели. Фит: $A_b = 0.259 \pm 0.024;$ $R_b = r_0 A_b^{1/3} \approx 0.76 \pm 0.02$ Фм, где A_2 – атомный вес ядра мишени.

Возможная корреляция частоты ω^0_{Λ} и множественности частиц в событии.

С ростом энергии \sqrt{s} увеличивается средняя множественность n_{tot} заряженных частиц в событии и меняется ω^0_A .

Интересно исследовать возможную связь заряженной множественности частиц n_{ch} в событии с числом кварковспектаторов и ω^0_{Λ} при фиксированной энергии √s (измерить флуктуации

множественности n_{ch} и её корреляцию с ω_A^0).

Происхождение величины λ

Отрицательный знак λ объясняется противоположными знаками цветовых зарядов кварка и антикварка и их вкладов в эффективное поле **B**^a.

Малая абсолютная величина λ может быть связана с отношением волновых функций qq и qq пар:

$$\lambda = - |\psi_{qq}(0)|^2 / |\psi_{q \tilde{q}}(0)|^2 \approx -1/8,$$
(58)

где для водородо-подобного потенциала волновая функция в нуле пропорциональна ($C_F \alpha_S$)^{3/2}, где $C_F = 4/3$ для цветового синглета и $C_F = 2/3$ для антитриплета.

S.P. Baranov, Phys. Rev. D54, 3228 (1996).

Глобальный анализ для 68 реакций дает $\lambda = -0.1321 \pm 0.0012$, что находится в качественном согласии с (58) и служит обоснование правил кваркового счета и модели в целом.

Выражение для a_s , полученное в рамках теории возмущений, имеет нефизическую сингулярность при малых значениях переданного импульса **q.** Решение проблемы было предложено Д.Ширковым в его аналитической теории возмущений (ATB).

$$\boldsymbol{\alpha}_{\mathbf{S}} = \alpha_{E}(q^{2}) = \frac{1}{\beta_{0}} \left[\frac{1}{l_{2}} + \frac{1}{1 - \exp(l_{2})}\right],\tag{59}$$

$$l_2 = l + B \ln \sqrt{l^2 + 2\pi^2}, \ l = \ln(\frac{q^2}{\Lambda^2}), \ B = \frac{\beta_1}{\beta_0^2}, \tag{60}$$

$$\beta_0(n_f) = \frac{33 - 2n_f}{12\pi}, \ \beta_1(n_f) = \frac{153 - 19n_f}{24\pi^2}, \tag{61}$$

Где **n**_f – число активных кварковых ароматов, **Λ** = 0.35 ГэВ. Д.В. Ширков и А.В. Заякин, ЯФ 70, 119 (2007).

Сравнение а₈ в аналитической теории возмущений (АТВ) и ТВ КХД.

В анализе данных характерная величина **α**_S ≈ 1.1, что соответствует условиям динамического нарушения киральной симметрии КХД.

K.Higashijima, Phys. Rev. D29, 1228 (1984).

Для оценки **q** используется соотношение $q = \rho_0 p_T$, где

Зависимость M_Q и $\Delta \mu^a{}_Q$ от q

В инстантонной модели динамические массы M_Q и аномальные хромомагнитные моменты кварков $\Delta \mu^a{}_Q$ зависят от переданного импульса q:

$$M_Q(q) = m_q + \Delta M_Q F_i(q), \quad (62)$$

$$\Delta \mu_Q^a(q) = \Delta \mu_Q^a(0) F_i(q)^2, \qquad (63)$$

 $F_i(q) = \exp[-(rac{q}{a_0})^{3/2}],$

где $q_0 \approx 0.7 \ \Gamma \Rightarrow B/c$. Анализ данных: $q_0 = 1.03 \pm 0.40 \ \Gamma \Rightarrow B/c$.

(64)

- Всего в анализ включены данные 68 реакций, в которых измерялись односпиновые наблюдаемые, A_N, P_N, ρ_{00} .
- Данные получены в hp, hA, AA, и *l*А–соударениях. Использовано 2100 экспериментальных точек.
- Глобальный фит дает χ^2 /d.o.f. = 0.995, при добавлении квадратично систематической ошибки 0.016 в каждой экспериментальной точке.

Всего имеется 43 глобальных параметра и 411 локальных параметров. На рисунках показана зависимость величины $G(\phi_A)$ от угла прецессии спина ϕ_A ,

где
$$G(\phi_A) = A_N / \{C(\sqrt{s})F(p_T, A)\} + \sigma G(\phi_B),$$
 (65)

или $G(\varphi_A) = P_N / \{C(\sqrt{s})F(p_T, A)\} + \sigma G(\varphi_B).$ (66)

Реакции, в которых измерялась анализирующая способность в hp и hA-соударениях. 23 реакции, 876 точек.

N⁰	Реакция	N⁰	Реакция	N⁰	Реакция
1	$p^{\uparrow} p(A) \rightarrow \pi^+$	9	$\tilde{\mathbf{p}}^{\uparrow} \mathbf{p} ightarrow \pi^{-}$	17	$\mathrm{K}^{-} \mathrm{d}^{\uparrow} \rightarrow \pi^{0}$
2	$p^{\uparrow} p(A) \rightarrow \pi^{-}$	10	${\widetilde p}^{\uparrow} \ p o \pi^0$	18	$\pi^{-} d^{\uparrow} \rightarrow \pi^{0}$
3	$p^{\uparrow} p(A) \rightarrow K^+$	11	$d^{\uparrow} A \rightarrow \pi^+$	19	$\widetilde{p}^{\uparrow} \ p \to \eta$
4	$p^{\uparrow} p(A) \rightarrow K^{-}$	12	$d^{\uparrow} A \rightarrow \pi^{-}$	20	$p^{\uparrow} \ p \to \tilde{p}$
5	$p^{\uparrow} p(A) \rightarrow n$	13	$\pi^+ p^{\uparrow} \longrightarrow \pi^+$	21	$p^{\uparrow} \ p \to \eta$
6	$p^{\uparrow} p ightarrow \pi^0$	14	$\pi^{-} \mathrm{p}^{\uparrow} ightarrow \pi^{0}$	22	$\tilde{p} d^{\uparrow} \rightarrow \pi^{0}$
7	$p^{\uparrow} p \rightarrow K^0{}_S$	15	$p^{\uparrow} p(A) \rightarrow p$	23	$\pi^{-} p^{\uparrow} \rightarrow \pi^{-}$
8	$\widetilde{p}^{\uparrow} p \longrightarrow \pi^+$	16	$\pi^{-} d^{\uparrow} \rightarrow \eta$		

Пр Глобальный анализ данных: А_N

Наиболее хорошо изученные реакции по измерению анализирующей способности в hp и hA-соударениях. 14 реакций № 1÷14, 510 точек. Высокая точность данных.

Модель:

сплошная кривая:

 $G(\varphi_A) = (1 - \cos \varphi_A) / \varphi_A + \varepsilon \varphi_A - 15$

Предсказания A_N для √s = 130 ГэВ, θ_{CM}= 4.1°

Предсказания A_N для √s = 500 ГэВ, θ_{CM}= 4.1°

Наблюдение осцилляций A_N в образовании протонов. 129 точек, $x_F > 0.1, p_T > 0.6 \Gamma \Rightarrow B/c.$

Модель:

сплошная кривая:

 $G(\varphi_A) = (1 - \cos \varphi_A) / \varphi_A + \varepsilon \varphi_A$

Реакции, в которых измерялась поляризация барионов в hp и hA-соударениях. 25 реакций, 916 точек.

N⁰	Реакция	N⁰	Реакция	N⁰	Реакция
24	$p p(A) \rightarrow \Lambda^{\uparrow}$	33	$K^- p \rightarrow \Lambda^{\uparrow}$	41	$\pi^+ p ightarrow \Lambda^{\uparrow}$
25	$p A \rightarrow \Xi^{\uparrow\uparrow}$	34	$\tilde{p} A \rightarrow \tilde{\Lambda}^{\uparrow}$	42	$\mathrm{K}^{+}\mathrm{p} ightarrow \Lambda^{\uparrow}$
26	$p A \rightarrow \Xi^{0\uparrow}$	35	$p \: A \to \tilde{\Xi}^{+\uparrow}$	43	$p A \rightarrow \tilde{\Lambda}^{\uparrow}$
27	$p A \rightarrow \Sigma^{\uparrow\uparrow}$	36	$p A \longrightarrow \tilde{\Sigma}^{-\uparrow}$	44	$\pi^- p \rightarrow \Lambda^\uparrow$
28	$p \ p \to p^{\uparrow}$	37	$\Lambda \to \Omega^{-\uparrow}$	45	$n A \rightarrow \Lambda^{\uparrow}$
29	$p A \rightarrow \Sigma^{-\uparrow}$	38	$\mathrm{K}^{-}\mathrm{A} ightarrow \Xi^{-\uparrow}$	46	$\mathrm{K}^{+}\mathrm{p}{ o}\tilde{\Lambda}^{\uparrow}$
30	$p A \rightarrow \Omega^{-\uparrow}$	39	$\Lambda \: A \to \Xi^{-\uparrow}$	47	$\Sigma^- A \longrightarrow \Xi^{-\uparrow}$
31	$\Sigma^{-} A \rightarrow \Lambda^{\uparrow}$	40	$p A \rightarrow \tilde{\Xi}^{0\uparrow}$	48	$\Sigma^{-} \operatorname{A} \rightarrow \widetilde{\Lambda}^{\uparrow}$
32	$\Sigma^- A \longrightarrow \Sigma^{+\uparrow}$				

Поляризация барионов

Наиболее хорошо изученные реакции по измерению поляризации барионов в hp и hA– соударениях. 19 реакций № 24÷42, 691 точка.

Наблюдается 7 циклов осцилляций для $\mathbf{K}^{-} \mathbf{p} \rightarrow \Lambda^{\uparrow} + \mathbf{X}$

Сплошная кривая:

 $G(\varphi_A) = (1 - \cos \varphi_A)/\varphi_A + \varepsilon \varphi_A$

Реакции, в которых измерялись P_N в AuAu-соударениях, поляризация векторных мезонов, P_N и A_N в лептонадронных соударениях. 20 реакций, 308 точек.

N⁰	Реакция	N⁰	Реакция	N⁰	Реакция
49	$Au+Au \rightarrow \Lambda^{\uparrow}$	56	$p p \rightarrow \phi(1020)^{\uparrow}$	63	$e^+ A \rightarrow \Lambda^{\uparrow}$
50	$\mathrm{Au+Au} \rightarrow \tilde{\Lambda^{\uparrow}}$	57	$n A \rightarrow K^*(892)^{\uparrow\uparrow}$	64	$e^+ A \rightarrow \tilde{\Lambda}^{\uparrow}$
51	$p \: A \longrightarrow J/\psi^{\uparrow}$	58	$n A \rightarrow K^*(892)^{+\uparrow}$	65	$e^+ p^\uparrow \longrightarrow \pi^+$
52	${\widetilde p} \: A \longrightarrow J/\psi^{\uparrow}$	59	$\tilde{\mathbf{p}} \mathbf{p} \to \mathbf{Y}(\mathbf{1S})^{\uparrow}$	66	$e^+ p^\uparrow \longrightarrow \pi^-$
53	$p A \rightarrow Y(1S)^{\uparrow}$	60	$\tilde{p} p \rightarrow Y(2S)^{\uparrow}$	67	$\mu^- p^{\uparrow} \longrightarrow h^+$
54	$p A \rightarrow Y(2S)^{\uparrow}$	61	AuAu \rightarrow K*(892) ^{0↑}	68	$\mu^- p^\uparrow \longrightarrow h^-$
55	$\tilde{p} p \rightarrow \rho(770)^{\uparrow}$	62	AuAu $\rightarrow \phi(1020)^{\uparrow}$		

Поляризация Л в Аu+Au-соударениях.

Эксперимент STAR:

 $\sqrt{s} = 62$ и 200 ГэВ

Поляризация в соударениях ядер

Поляризация Λ в Au+Au-соударениях. Эксперимент STAR При низких энергиях «частота» $\omega_A > 0$ и

имеет место эффект фокусировки кварков, усиливающий поляризацию.

Предсказания для $\sqrt{s} = 9$ и 7 ГэВ: Cu + Cu $\rightarrow \Lambda^{\uparrow} + X$

11.41

Сравнение измеренных значений ω_A и предсказаний модели

Наиболее хорошо изученные реакции по измерению поляризации векторных мезонов в hp и hA–соударениях. 9 реакций № 51÷59, 116 точек.

Модель:

сплошная кривая:

 $G(\varphi_A) = (1 - \cos \varphi_A) / \varphi_A + \varepsilon \varphi - \frac{-2}{-20}$

Предсказания для реакции $\mathbf{p} + \mathbf{Cu} \rightarrow \mathbf{J}/\psi^{\uparrow} + \mathbf{X}$ при энергиях $\sqrt{\mathbf{s}} = 200 \ \Gamma_{2}B,$ $\sqrt{\mathbf{s}} = 11 \ \Gamma_{2}B,$ $\sqrt{\mathbf{s}} = 38.8 \ \Gamma_{2}B.$

Данные: √**s** = 38.8 ГэВ, T.H. Chang et al. Phys. Rev. Lett. 91, 211801 (2003).

Лептон-адронные соударения

Реакции по измерению в лептон-адронных соударениях. 3 реакции № 63÷65, 19 точек, HERMES.

 $e^{+} d \rightarrow \tilde{\Lambda}^{\uparrow} + X$ $e^{+} d \rightarrow \Lambda^{\uparrow} + X$ $e^{+} p^{\uparrow} \rightarrow \pi^{+} + X$

Модель:

сплошная кривая:

 $G(\varphi_A) = (1 - \cos \varphi_A)/\varphi_A + \varepsilon \varphi_A$

 $G(\varphi_A) = (1 - \cos \varphi_A)/\varphi_A + \varepsilon \varphi_A$

11.41

Данных по 46 наиболее изученным реакциям, -60 < ϕ_A < 10.

Наблюдается 7 циклов осцилляций для $K^- p \rightarrow \Lambda^{\uparrow} + X$

Частота осцилляций:

Модель:
$$\omega_A^0 = -8.79;$$

Фит: $\omega_A^0 = -8.45 \pm 0.20;$

Модель:

сплошная кривая:

$$G(\varphi_A) = (1 - \cos \varphi_A)/\varphi_A + \varepsilon \varphi_A$$

Данных по 46 наиболее изученным реакциям, -10 < φ_A < 40.

Модель:

сплошная кривая:

 $G(\varphi_A) = (1 - \cos \varphi_A)/\varphi_A + \varepsilon \varphi_A$

Динамические массы кварков при нулевой виртуальности, q = 0.

Настоящая работа: $M_U = 0.254 \pm 0.027 \ \Gamma \ni B/c^2$ $M_D = 0.330 \pm 0.047 \ \Gamma \ni B/c^2$ $M_S = 0.541 \pm 0.065 \ \Gamma \ni B/c^2$ $M_C = 1.45 \pm 0.11 \ \Gamma \ni B/c^2$ $M_B = 5.95 \pm 0.37 \ \Gamma \ni B/c^2$ Wikipedia: $M_U \approx 0.30 \ \Gamma \Rightarrow B/c^2;$ $M_D \approx 0.30 \ \Gamma \Rightarrow B/c^2;$ $M_S \approx 0.45 \ \Gamma \Rightarrow B/c^2;$ $m_c \approx 1.25 \pm 0.09 \ \Gamma \Rightarrow B/c^2;$ $m_b \approx 4.2-4.7 \ \Gamma \Rightarrow B/c^2;$

Из анализа заряженных форм-факторов пионов: $M_U \approx M_D \approx 0.25 \ \Gamma \Rightarrow B/c^2$; A.F.Krutov, V.E.Troitsky, Eur. Phys. J. C20 (2001) 71. (JLAB data)

 $M_{O} = (2/3)^{1/2} \pi F_{\pi} = 0.24 \ \Gamma \Rightarrow B;$ С.Б.Герасимов, ЯФ 29(1979)513.

 $M_U = 0.263 \Gamma_{3}B$; M.Mekhfi, Phys.Rev. D72(2005)114014.

Радиус струны: $\rho = 3.1 \pm 1.6 \ \Gamma$ эВ⁻¹ или $0.61 \pm 0.32 \ \Phi$ м.

Эффективная длина S₀: S₀ = $2.7 \pm 3.1 \ \Gamma$ эB⁻¹ или $0.53 \pm 0.61 \ \Phi$ м.

 $S_0/\rho^2 = 0.292 \pm 0.015 \ \Gamma \Im B.$

Теория: ρ =1.25R_C ≈ 2.08 ГэВ⁻¹

А.Б. Мигдал и С.Б. Хохлачев, Письма в ЖЭТФ, 41 (1985) 159.

 $\Delta \mu^a = (g^a - 2)/2$

Аномальные хромомагнитные моменты кварков при нулевой виртуальности, q=0 (получены впервые):

Настоящая работа: $\Delta \mu^{a}{}_{U}(0) = -0.64 \pm 0.12$ $\Delta \mu^{a}{}_{D}(0) = -0.56 \pm 0.13$ $\Delta \mu^{a}{}_{S}(0) = -0.61 \pm 0.12$ $\Delta \mu^{a}{}_{C}(0) = -0.78 \pm 0.09$ $\Delta \mu^{a}{}_{B}(0) = -0.76 \pm 0.09$

Инстантонная модель: Кочелев: $\Delta \mu^{a} = -0.2;$ Дьяконов: $\Delta \mu^{a} = -0.744;$

N.I. Kochelev, Phys. Lett. B426(1998) 149.

D. Diakonov, Prog. Part. Nucl. Phys. 51(2003)173.

□ Фокусирующее действие эффективного цветового поля на кварки. Требуются прецизионные измерения A_N , P_N и ρ_{00} от энергии \sqrt{s} , p_T , x_F и атомного веса сталкивающихся ядер. Диапазон энергий ускорителя ИФВЭ близок к оптимальному. Планируемое ускорение ядер и поляризованных протонов позволит значительно расширить эти возможности.

Прецессию спинов кварков в хромомагнитном поле и осцилляции односпиновых наблюдаемых A_N , P_N и ρ_{00} как функций угла прецессии ϕ_A и других кинематических переменных. Требуются прецизионные измерения A_N , P_N и ρ_{00} в возможно более широком диапазоне p_T и x_F . Ионные пучки позволяют на порядок увеличить частоту осцилляций ω_A^0 , что облегчает ее наблюдение и измерение.

Механизм генерации хромомагнитного поля. Установить связь числа кварков-спектаторов с множественностью частиц в зависимости от угла их вылета. Требуется исследовать полуинклюзивные реакции, в которых дополнительно измеряется множественность частиц в событии и распределение энергии в направлении пучка.

□ Зависимость односпиновых наблюдаемых от аромата кварков. Требуется измерить A_N, P_N и ρ₀₀ для возможно более широкого спектра реакций, в том числе для векторных мезонов, адронных резонансов, нейтронов и антибарионов.

Роль множественного образования кварков при высоких энергиях. Требуются измерения A_N, P_N и ρ₀₀ при различных энергиях на коллайдерах RHIC, FNAL и LHC.

Заключение

□ Предложен новый механизм происхождения односпиновых эффектов в *hh*, *hA*, *AA* и *IN*-соударениях, связанный с взаимодействием составляющих кварков с эффективным цветовым полем КХД струн, создаваемых кваркамиспектаторами: микроскопический эффект Штерна-Герлаха.

□ Прецессия спинов кварков в хромомагнитном поле приводит к осцилляции односпиновых наблюдаемых A_N и P_N, как функций угла прецессии φ_A и других кинематических переменных.

Частоты осцилляций описываются правилами кваркового счета, учитывающими их зависимость от аромата кварков, энергии \sqrt{s} , p_T , x_F и атомного веса сталкивающихся ядер.

Фокусирующее действие эффективного цветового поля на кварки приводит к характерной резонансной зависимости A_N и P_N от энергии \sqrt{s} .

□ Глобальный анализ данных по P_N и A_N для 68 реакций позволил получить оценки размеров КХД-струн, динамических масс и хромомагнитных моментов составляющих *u*, *d*, *s*, *c* и *b*- кварков.

 Исследование односпиновых эффектов дает ценную информацию о динамике взаимодействия кварков, механизме их адронизации, спиновой структуре адронов, конфайнменте и спонтанном нарушении киральной симметрии.

Реакции с низкой статистикой и точностью данных

Массы и аномальные хромомагнитные моменты кварков

 $\frac{\text{Таблица 4.}}{\text{составляющих кварков } m_q, добавки к динамической массе кварков <math>\Delta M_Q(0)$, массы составляющих кварков $M_Q(0) = m_q + \Delta M_Q(0)$ и ан окальные крожомагнитные моженты составляющих кварков $\Delta \mu_Q^a(0)$ при нудевой виртуальности, q = 0.

Аромат	$m_{ m q}, \Gamma$ э ${ m B}/c^2$	$\Delta M_Q(0),$ Гэ B/c^2	$M_Q(0), \Gamma$ э B/c^2	$\Delta \mu_Q^a(0)$
u	0.002	0.252 ± 0.027	0.254 ± 0.027	-0.64 ± 0.12
d	0.005	0.325 ± 0.047	0.330 ± 0.047	-0.56 ± 0.13
s	0.095	0.446 ± 0.065	0.541 ± 0.065	-0.61 ± 0.12
c	1.25	0.19 ± 0.11	1.45 ± 0.11	-0.78 ± 0.09
b	4.20	1.75 ± 0.37	5.95 ± 0.37	-0.76 ± 0.09

<u>Таблица 5.</u> Размерные параметры глобального фита данных.

Парамстр, ГэВ-1		Пар	амстр, Гэ B/c	Параметр, ГэВ		
D	5.68 ± 0.13	p_N	28 ± 10	W_1	265 ± 14	
ρ	3.1 ± 1.6	p_d	1.08 ± 0.27	W_2	238 ± 54	
S_0	2.7 ± 3.1	p_a	1.71 ± 0.32			
d_1	0.257 ± 0.038	q_0	1.03 ± 0.40			
d_2	0.109 ± 0.019					

Таблица 6. Безразыерные параметры глобального фита данных.

Параметр		Параметр		Параметр	
λ	-0.1321 ± 0.0012	a_u	0.169 ± 0.015	A_a	11.84 ± 0.33
τ	0.0563 ± 0.0029	a_d	0.359 ± 0.019	A_b	0.258 ± 0.024
ε	-0.00419 ± 0.00022	a_s	0.336 ± 0.017	b_1	0.053 ± 0.016
α	-0.016 ± 0.011	a_c	-0.147 ± 0.033	b_2	0.0100 ± 0.0043
δ	0.0190 ± 0.0034	a_b	-0.407 ± 0.065	ρ_0	0.0163 ± 0.0018
n_q	4.52 ± 0.32	n_1	1.377 ± 0.087	ĸ	286 ± 68
a_R	1.34 ± 0.16	n_2	0.91 ± 0.37	k	0.0475 ± 0.0004

Глобальная поляризация **Л-гиперонов в** соударениях Au+Au

Au+Au $\rightarrow \Lambda$: $\sqrt{s}=200 \text{ GeV}$, $\omega_A = -479\pm83$; Au+Au $\rightarrow \Lambda$: $\sqrt{s}=62 \text{ GeV}$, $\omega_A = -60\pm9_{11.29}$

Au+Au $\rightarrow \tilde{\Lambda}$: $\sqrt{s}=200 \text{ GeV}$, $\omega_{A}=-648\pm46$; Au+Au $\rightarrow \tilde{\Lambda}$: $\sqrt{s}=62 \text{ GeV}$, $\omega_{A}=-359\pm15$

Глобальная поляризация $ilde{\Lambda}$ –гиперонов в соударениях Au+Au

Au+Au $\rightarrow \Lambda$: $\sqrt{s}=200 \text{ GeV}$, $\omega_A = -675\pm23$; Au+Au $\rightarrow \Lambda$: $\sqrt{s}=62 \text{ GeV}$, $\omega_A = -294\pm16$

Поляризация ∧ в соударениях Аu+Аu при энергии √s=5 GeV в E896.

Модель эффективного цветного поля предсказывает для Au+Au при $\sqrt{s}=5$ ГэВ положительную частоту $\omega_A = +19.4 \pm 3.0$.

При высоких энергиях, как показано выше, частота _А большая и отрицательная:

 ω_{A} = -374±51; \sqrt{s} =200 GeV.

Данные: Au+Au \rightarrow A +X: \sqrt{s} =4.86 GeV, ω_A = +18.61±0.54;

Цветное поле В^а пропорционально числу кварков $N_0 \sim A^{1/3} \exp(-w/\sqrt{s})$

Au+Au $\rightarrow \Lambda$: $\sqrt{s}=200 \text{ GeV}$, $\omega_A = -374\pm 51$; Au+Au $\rightarrow \Lambda$: $\sqrt{s}=62 \text{ GeV}$, $\omega_A = -58\pm 38$

Данные реакции $p^{\uparrow} + p(A) \rightarrow \pi^+ X$

 $\mathbf{p}^{\uparrow} + \mathbf{p} \rightarrow \pi^0 \mathbf{X}$

Сравнение измеренных значений A_N и предсказаний модели

 $\sqrt{s}=18.7 \ \Gamma$ эВ, FNAL $\sqrt{s}=19.4 \ \Gamma$ эВ, E704; $\sqrt{s}=62.4 \ \Gamma$ эВ, PHENIX $\sqrt{s}=200 \ \Gamma$ эВ, STAR $\sqrt{s}=200 \ \Gamma$ эВ, STAR

Ограниченность интеграла эффективного поля КХД струн: S = S₀x_A

Длина пути (*S*) кварка в поле трубки при фиксированном р_Т

$$S \sim R_{\rm T}/\sin(\theta_{Lab}) \sim p/p_{\rm T} \sim P_{\rm A} x_{\rm A}/p_{\rm T}$$
 – геометрический фактор.

Quark path length S in a color flux tube.

 $S \sim l_f \sim p \sim P_A x_A$ (если длина формирования меньше $R_T / sin(\theta_{Lab})$). Таким образом, длина пути кварка в эффективном хромомагнитном поле струны пропорциональна $x_A : S = S_0 x_A$. Коэффициент S_0 не растет в с.ц.м. линейно с $P^{cm}_A \sim \sqrt{s}$, а практически постоянен, т.к. длина струны не может расти неограниченно в силу конфайнмента. Происходит ее фрагментация с образованием пары кварк-антикварк, после чего кварк и антикварк в каждом из образовавшихся сегментов струны начинают ускоряться навстречу друг другу полем струны, что ограничивает рост суммарной длины струн и эффективного интеграла поля **B**^a.

Ограниченность интеграла эффективного поля КХД струн: S = S₀x_A

Другой аргумент в пользу ограниченности роста интеграла эффективного поля: суммарная длина сегментов струн пропорциональна полной заряженной множественности N_{ch} в событии, поскольку каждую частицу (мезон во всяком случае) можно представить в виде сегмента струны с характерным адронным размером ~1/m_{π}. Как известно, в ppсоударениях

$$N_{ch} = 0.88 + 0.44\ln(s) + 0.118\ln^2(s).$$
⁽²⁵⁾

Полное сечение также растет при высоких энергиях ~ $\ln^2(s)$, что означает рост эффективного поперечного размера поля как r ~ $\ln(s)$. Таким образом, интеграл поля должен асимптотически расти как $\omega_A \sim \int BdS \sim N_{ch}/r^2 \sim const$. При умеренных энергиях $\sqrt{s} <50$ ГэВ наблюдается быстрый рост отношения \tilde{p}/p , что приводит к значительному росту ω_A .

10.46

$$\mathbf{P}_{N} \approx \mathbf{C}(\sqrt{s}) \mathbf{F}(\mathbf{p}_{T}, \mathbf{A}) [\mathbf{G}(\mathbf{y}_{A}\boldsymbol{\omega}_{A}) - \boldsymbol{\sigma}(\boldsymbol{\theta}_{cm}) \mathbf{G}(\mathbf{y}_{B}\boldsymbol{\omega}_{B})]; \qquad (49)$$

$$\mathbf{G}(\boldsymbol{\varphi}_{\mathbf{A}}) = (\mathbf{1} - \boldsymbol{\cos}\boldsymbol{\varphi}_{\mathbf{A}})/ \boldsymbol{\varphi}_{\mathbf{A}} + \boldsymbol{\varepsilon} \boldsymbol{\varphi}_{\mathbf{A}}; \tag{50}$$

$$C(\sqrt{s}) = v_0/(1 - E_R/\sqrt{s});$$
 (51)
p_T and А-зависимость (от мишени – поглощение, торможение):

$$F(p_T,A) = \{1 - \exp[-(p_T/p_T^0)^3]\}(1 - \alpha \ln A)$$
(52)

Всего 11 локальных феноменологических параметров: $\omega_A, \omega_B, \varepsilon, E_0, E_R, D, \sigma, \alpha, f_0, a_0, p_T^0$.

В случае А=В их число уменьшается до 9: $\omega_A = \omega_B, \sigma = 1.$

 $\alpha = -0.016 \pm 0.011;$ $\varepsilon = -0.00419 \pm 0.00022;$

Реакции по измерению поляризации Λ и $\tilde{\Lambda}$ в Au+Au-соударениях.

Эксперимент STAR

Предсказания для $\sqrt{s} = 9$ и 7 ГэВ: C + C $\rightarrow \tilde{\Lambda}^{\uparrow} + X$

Сравнение измеренных значений ω_A и предсказаний модели

Несколько групп данных, со значительно отличающимися (_{Ма}:

← Au+Au
$$\rightarrow \Lambda$$
, $\sqrt{s}=200 \ \Gamma \Rightarrow B$

← Au+Au
$$\rightarrow \Lambda$$
, $\sqrt{s}=62-200$ ГэВ

Сравнение измеренных значений ω_A и предсказаний модели

- ← Au+Au $\rightarrow \Lambda$, \sqrt{s} =4.86 ГэВ
- ← p+p(A) → $\pi^{\pm,0}$, K⁺, $\sqrt{s} < 20$ ΓэB ← p+A → $\Lambda, \Xi^{-0}, \Sigma^{+}, \sqrt{s} < 40$ ΓэB
- ← M+A → $\Lambda, \tilde{\Lambda}, \sqrt{s} < 20 \ \Gamma_{2}B + (J/\psi)$
- ← p+p → $\pi^{\pm,}$, K[±], $\sqrt{s} = 200 \ \Gamma_{2}B$
- ← p+A →K^{*-}, $\tilde{\Lambda}$, $\tilde{\Xi}^+$, $\sqrt{s} < 40$ ГэВ

← Au+Au
$$\rightarrow \Lambda$$
, $\sqrt{s} = 62 \ \Gamma \Rightarrow B$

1) А+А $\rightarrow \Lambda$: при малых $\sqrt{s} \omega_A$ положительна и растет с увеличением А; при больших $\sqrt{s} \omega_A$ – отрицательна, $|\omega_A|$ – тоже растет.

2) Au+Au $\rightarrow \Lambda$: возможен минимум ω_A при $\sqrt{s} = 170$ ГэВ из-за подавления эффективного поля при больших значениях p_T Λ -гиперона.

1) Au+Au $\rightarrow \Lambda$: при малых $\sqrt{s} \omega_A$ положительна и не зависит от p_T и x_F .

2) При больших $\sqrt{s} \omega_A$ отрицательна, $|\omega_A|$ – уменьшается с ростом p_T и x_F из-за подавления эффективного поля при больших значениях p_T и $x_F \Lambda$.