Observation of $f_{1}(1285) \rightarrow \pi^{+} \Pi^{-} \pi^{0}$ decay at VES detector

V.Dorofeev, R.Dzheliadin, A.Ekimov, Yu.Gavrilov, Yu.Gouz, A.Ivashin, V.Kabachenko, I.Kachaev, A.Karyukhin, Yu.Khokhlov, V.Konstantinov, M.Makouski, V.Matveev, A.Miagkov, V.Nikolaenko, A.Ostankov, B.Polyakov, D.Ryabchikov, N.Shalanda, M.Soldatov, A.A.Solodkov, A.V.Solodkov, O.Solovianov, A.Zaitsev

Presented at HADRON-2007 conf. hep-ex/ 0712.2512
To be submitted to Phys.Lett.B

Introduction.

- f1(1285) mass: $m=1281.8 \pm 0.6 \mathrm{MeV}$; width: $W=24.2 \pm 1.1 \mathrm{MeV}$;
- Known f1(1285) decays: $\mathrm{f} 1(1285) \rightarrow 4$ т,

BR=(33.1 $\pm 2.1) \%$ f1 1285) \rightarrow пптா, $\quad B R=(52 \pm 16) \%$ including $\rightarrow \mathrm{a}_{0}(980) \pi \quad \mathrm{BR}=(36 \pm 7) \%$ f1(1285) $\rightarrow \mathrm{K} \overline{\mathrm{K}} \pi$ $f 1(1285) \rightarrow \rho \gamma$ $B R=(9.0 \pm 0.4) \%$ $B R=(5.5 \pm 1.3) \%$

Isospin symmetry violation

- $f_{1}(1285)$ has $I^{G} J P C=0^{+} 1^{++}$
- The $f_{1}(1285)$ decay into three pions is prohibited by isospin symmetry
- But the isospin symmetry is violated
- in EM processes
- due to the quark mass difference $m_{d}>m_{u}$ known isospin-violating decays:

$$
\omega \rightarrow \pi^{+} \pi^{-}, \varphi \rightarrow \pi^{+} \pi^{-}, \eta \rightarrow 3 \pi, \quad \psi(2 \mathrm{~s}) \rightarrow \mathrm{J} / \psi \pi^{0}
$$

$\mathrm{a}_{0}(980) \leftrightarrow \mathrm{f}_{0}(980)$ mixing

- $\mathrm{f}_{0}(980)$ has $\mathrm{I}^{\mathrm{G}} \mathrm{JPC}^{\mathrm{JP}}=0^{+} 0^{++}$
- $\mathrm{a}_{0}(980)$ has $\mathrm{IG}^{\mathrm{G}} \mathrm{JPC}^{2}=10^{++}$
- Isospin symmetry violation makes possible $\mathrm{a}_{0}(980) \leftrightarrow \mathrm{f}_{0}(980)$ mixing
- A mechanism of $a_{0}(980) \leftrightarrow f_{0}(980)$ mixing via looks of virtual kaons was proposed

$\mathrm{a}_{0}(980) \leftrightarrow \mathrm{f}_{0}(980)$ mixing (2)

- by N.Achasov, S.Devyanin, G.Shestakov Phys.Lett.B88 (1979) 367;
- diagrams with pairs of virtuak(${ }^{0} \overline{\mathrm{~K}}^{0} \quad$) and ($\mathrm{K}^{+} \mathrm{K}^{-}$) cancel one another but this cancellation is not perfect because of the mass difference between charged and neutral kaons
- The effect has a maximum at the mass region between 987.3 MeV < m < 995.3 MeV i.e. ($\mathrm{K}^{+} \mathrm{K}^{-}$) above threshold buK ${ }^{0} \overline{\mathrm{~K}}^{0}$) below threshold
This mechanism leads to a narrow peak on m(mт).

$\mathrm{f}_{1}(1285) \leftrightarrow \mathrm{a}_{1}(1260)$ mixing

- Another possible mechanism which leads to $f_{1}(1285)$ decay into three pions is $\mathrm{f}_{1}(1285) \leftrightarrow \mathrm{a}_{1}(1260)$ mixing, see for example S.A.Coon, B.H.J.McKellar, V.G.J.Stoks, Phys.Lett.B385(1996)25; predicted mixing depends on the $\mathrm{a}_{1}(1260)$ width which is not well known

Proposed experiments

- Several methods for search of the $a_{0}(980) \leftrightarrow f_{0}(980)$ mixing were proposed:
- a) the $f_{1}(1285) \rightarrow a_{0}(980) \pi$ decay as a source of $a_{0}(980)$-mesons, and search for $\mathrm{f}_{0}(980) \rightarrow$ тाт decays;
- b) a special polarization experiment;
- c) the $J / \Psi \rightarrow f_{0}(980) Y$ decay, and search for $a_{0}(980 \rightarrow) \eta$ decays;
- d) central production of $f_{0}(980)$ in pp-collisions and search for $a_{0}(980 \rightarrow) \eta \pi$ decays;
e) asymmetries in polarized-p+n \rightarrow De $\pi^{0} \eta$, and polarized-p+p \rightarrow De $\pi^{+} \eta$;

References

- N.N.Achasov, G.N.Shestakov, Phys.Rev.D70 (2004) 074015, hep-ph/0312214;
- N.N.Achasov, S.A.Devyanin, G.N.Shestakov, Yad. Fiz. 33 (1981) 1337; Sov.J.Nucl. Phys. 33 (1981) 715;
- Jia-Jun Wu, Qiang Zhao and B.S.Zou, hep-ph 0704.3652 ;
- C.Hanhart, B.Kubis, J.R.Pelaez, hep-ph 0707.0262
- A.; E. Kudryavtsev, V.E. Tarasov, Yad.Fiz. 66 (2003) 1994-2000,2003; nucl-th/0304052

Central production in pp-collisions

- Central production of the $\eta \pi^{0}$ system has been observed in WA102 experiment It can be interpreted as an experimental indication on possible $\mathrm{a}_{0}(980)$ - $\mathrm{f}_{0}(980)$ transition. (F.Close, A.Kirk, Phys.Lett. B489 (2000) 24;). However, an exchange by secondary Regge trajectories can lead to the observed $\eta \pi^{0}$ production too.
- Therefore another interpretation is possible (see N.N.Achasov and A.V.Kisilev, Phys.Lett. B534 (2002) 83 ;)

Proposal of polarization experiment

- Needed transverse proton polarization;
- Reaction $\pi^{-} p \rightarrow\left(\eta \pi^{0}\right) n ;$
- the existence of the $\mathrm{a}_{0}(980) \leftrightarrow \mathrm{f}_{0}(980)$ mixing can be unambigously established through the presence of a strong jump in the azimuthal (single-spin) asymmetry of the S-wave $\eta \pi^{0}$ production cross section near the KK thresholds

VES experiment

- The VES detector is a wide aperture forward spectrometer, which is
- Installed in unseparated beam of negative particles (mainly π^{-})
- Equipped with EM calorimeter
- Cherenkov detectors for identification of beam and charged secondary particles
- Fast Data Acquisition system
- Minimum bias trigger

reaction $\pi^{-} N \rightarrow\left(f_{1} \pi^{-}\right) \mathrm{N}$

- is suitable for search of $f_{1} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay:
- this is a diffractive reaction, the cross section is large and the It l-distribution is narrow;
- background reaction $\pi-\mathrm{N} \rightarrow(4 \pi) \mathrm{N}$ is not a diffractive process and it is relatively suppressed, particularly at low It I;
- the dominant decay, $\mathrm{f}_{1} \rightarrow \boldsymbol{\eta} \pi^{+} \Pi^{-}$, and the rare decay $f_{1} \rightarrow \pi^{+} \Pi^{-} \pi^{0}$ are similar from the experimental point of view

Experiment and event selection

- Statistics acquired in π-Be interactions at 27, 36.6 and $41 \mathrm{GeV} / \mathrm{c}$ is analyzed
- requested primary vertex, two neg. and one pos. outgoing track, two showers in ECAL, which are not associated with charged tracks and have $\mathrm{E}>250 \mathrm{MeV}$
- Events with identified e^{+-}or K^{+-}were rejected
- A requirement on the sum of energies of outgoing particles was imposed, which selected events in diffractive peak

Fig.1, π^{0} and η signals

selection requirements (cont.)

- EM-showers with effective mass from 105 to 165 MeV were taken as π^{0}-candidates; the m-range for η-candidates was $(435,620) \mathrm{MeV}$;
- Accepted (Yy)-candidates were subjected to a kinematical 1C-fit to a pion or η mass; fitted parameters were used at further steps . Number of selected ($\pi+\pi-\pi 0 \pi-$) events is ~9.0-106.
- Events with I t'l < 0.04 GeV2 were kept for analysis

Fig.2, t-distributions

t-distribitions for $\left(\pi^{+} \pi^{*} \pi^{0} \pi^{-}\right)$and ($\left.\eta \pi^{+} \pi^{*} \pi^{-}\right)$production

Fig.3, $\left(\eta \pi^{+} \pi^{-} \pi^{-}\right)$system

- Events with $-\mathrm{t}<0.04 \mathrm{GeV}^{2}$ selected, the number of f_{1} events is 117600 ± 1300

($\eta \pi^{+} \pi^{-}$) system

- The following observations were made:
- the $\left(f_{1} \pi^{-}\right)$system is produced in spin-parity state $\mathrm{JP}^{\mathrm{P}} \mathrm{m} \mathrm{\eta}=1^{+} 0^{+}$;
- the decay of this system into $\mathrm{f}_{1}\left(\mathrm{JP}=1^{+}\right)$ and π proceeds in P-wave;
- the decay $f_{1} \rightarrow \eta \pi \pi$ again involves a P wave ;
- we derived an angular part of the amplitude which describe the sequence of production and decay processes:

angular amplitude

$$
A=\frac{3}{\sqrt{2}} \sin \theta_{1} \sin \theta_{2} \sin \left(\phi_{0}-\phi_{2}\right)
$$

θ_{1} is the Gottfried-Jackson angle of the extra π; θ_{2} is the polar angle of π^{0} at the f_{1} rest frame with Z -axis going along the direction of extra π; φ_{0} and φ_{2} are angles of the beam particle and the π^{0} momentum projections to the plane which is orthogonal to the momentum of extra pion.
Validity of the corresponding weight,

$$
W=|A|^{2}
$$

is demonstrated at Fig.4.

Fig.4, ($\left.\eta \pi^{+} \pi^{-} \pi^{-}\right)$system

$\left(\eta \pi^{+} \pi^{*} \pi^{*}\right)$ system

$m\left(\eta \pi^{+} \pi^{-}\right)$distribution for events at $W>0.8$ is divided by a similar spectrum at $\mathrm{W}<0.2$

Fig.5, ($\left.\pi^{0} \pi^{+} \pi^{-} \pi^{-}\right)$system

$$
\text { (} \pi^{+} \pi^{-} \pi^{0} \pi^{-} \text {) system }
$$

- The total mass and the mass spectra of 2- and 3body combinations are shown at Fig. 5 .
- There are two entries per event at Fig. 5b, 5d, $5 f$
- It worse mentioning that the decay $\omega \rightarrow \pi^{+} \pi^{-}$is seen at Fig.5d (see zoom at the corner).
- A structure seen at Fig.5b near $\mathbf{m = 1 3 0 0} \mathbf{~ M e V}$ was subjected to detailed analysis.
- New cut: events with $m\left(\pi^{+} \pi^{-} \pi^{0}\right)<800 \mathrm{Mev}$ were discarded.
- Angular weight W obtained in the analysis of the ($\eta \pi^{+} \pi^{-}$) system was applied

Fig.6, Selected events at $\left.0.97<m\left(\pi^{+} \pi^{-}\right)<1.00\right)$

- a) $m\left(\pi^{+} \Pi^{-} \pi^{0}\right)$ at low ItI; b) the same but weighted; c) ratio of Weighted to Unweighted spectra; d) similar ratio for $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ at high It $\left.I ; e\right)$ similar ratio for $m\left(\pi^{+} \pi^{-} \pi^{-}\right)$at low It I.

Fig. 7, Ratio of weighted mass spectra at $\left.0.97<m\left(\pi^{+} \pi^{-}\right)<1.00\right)$
 VES preliminary

- $m\left(\pi^{+} \pi \pi^{0}\right)$ spectrum at low $I t I$ is divided by a spectra sum:
- sum $=m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ at high It I plus $m\left(\pi^{+} \Pi^{-} \pi^{-}\right)$at low It I; fit by BW + linear Background yields $m=1285 \pm 5 \mathrm{MeV}$ and Width $28 \pm 10 \mathrm{MeV}$; the signal significance is $\mathbf{4 \sigma}$

Next steps (cont.)

- events with 3-body mass, $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ in the interval from 1.20 to 1.35 GeV were taken. This interval was subdivided into 15 bins, the bin width is 10 MeV .
- The $m\left(\pi^{+} \pi^{-}\right)$spectra in individual bins were inspected. A bump at the mass close to 985 MeV is observed at the bin from 1280 to 1290 (Fig.8). The fit with a gaussian signal and BG (phase space multiplied to a quadratic function with arbitrary coefficients) is shown.

Fig. 8, Fit of $m\left(\pi^{+} \pi^{-}\right)$spectrum

VES preliminary

Fit result

selected events at $1.280<m\left(\pi^{+} \pi \pi^{0}\right)<1.290 \mathrm{GeV}$

Last steps

- The gaussian width of the fitted signal was determined at mass bin from 1280 to 1290 MeV , and then it was fixed. Statistical significance of the signal in this bin increased to 6.0σ. Then fits at other bins were made, with fixed gaussian width.
- Results are shown at Fig.9. A peak is observed at this summary plot, with mass $1288 \pm 2 \mathrm{MeV}$ and BreitWigner width of $19 \pm 4 \mathrm{MeV}$
- The sum of observed signals $\mathrm{N}=1491 \pm 334$ events.
- A similar procedure with binning on the $m\left(\pi^{+} \pi^{-} \pi^{-}\right)$ was performed, no signal at the f_{1} region was found.

Fig.9.VES data

Fitted number events in the peak at $m\left(\pi^{+} \pi^{-}\right)$ spectrum near 985 MeV as a function of $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$

Search for $\mathrm{f}_{1}(1285)-\mathrm{a}_{1}(1260)$ mixing

- This mixing should lead to $\left(\rho^{+--} \pi^{-+}\right) \rightarrow \pi^{+} \pi \pi^{0}$ final states
- A fit of the $m\left(\pi^{+} \pi^{0}\right)$ spectra in several intervals of $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ gives the variation of the ρ^{+} signal
- No enhancement of the ρ^{+}signal at the $\mathrm{f}_{1}(1285)$ mass is observed

fitted ρ^{+}signal vs $m\left(\pi^{+} \pi \pi^{-}\right)^{0}$

Limit on the $f_{1}(1285)-a_{1}(1260)$ transition

- A fit of the observed ρ^{+}yield assuming the gaussian f_{1} signal (with fixed mass and width) and a background
- BG = P2 + BW (a_{2})
- gives the number of $\mathrm{f}_{1} \rightarrow \mathrm{p}^{+} \pi$ events, $\mathrm{N}=--993 \pm 1172$
- This number can be transformed to the upper limit :
- $\operatorname{BR}\left(\mathrm{f}_{1}(1285) \rightarrow \mathrm{p}^{+--} \pi^{+}\right)<0.4 \%$ at 90% conf. level

Limit on $\mathrm{f} 1 \leftrightarrow \mathrm{al}$ mixing

- $\operatorname{BR}(f 1 \rightarrow \rho \pi)=\Gamma_{a 1 \rightarrow \rho \pi} / \Gamma_{f 1} \cdot\left(\Pi_{f 1 a 1} /\left(m_{a 1}^{2}-m_{f 1}^{2}-i\left(m_{f 1} 1 \Gamma_{f 1}-m_{a 1} \Gamma_{a 1}\right)\right)^{2}\right.$

$$
\approx \Pi^{2}{ }_{\mathrm{fla} 1} /\left(\mathrm{m}_{\mathrm{f} 1}^{2} \Gamma_{\mathrm{f} 1} \Gamma_{\mathrm{a} 1}\right)
$$

Upper limit $B R\left(f_{1}(1285) \rightarrow \rho^{+-} \Pi^{+}\right)<0.4 \%$ leads to:

```
\(\Pi_{\mathrm{f} 1 \mathrm{a} 1}<0.0056 \mathrm{GeV}^{2} \quad\) for \(\Gamma_{\mathrm{a} 1}=200 \mathrm{MeV}\)
\(\Pi_{\mathrm{f} 1 \mathrm{a} 1}<0.0097 \mathrm{GeV}^{2} \quad\) for \(\Gamma_{\mathrm{a} 1}=600 \mathrm{MeV}\)
```

It can be compared with prediction based on the assumption of universality of charge symmetry breaking in different channels like $\omega \rightarrow \pi^{+} \pi^{-}, \varphi \rightarrow \pi^{+} \pi^{-}, \eta \rightarrow 3 \pi$
(Coon, Scadron, 1994)

$$
\Pi_{\mathrm{f} 1 \mathrm{a} 1}=0.005 \mathrm{GeV}^{2}
$$

Conclusions

- All elements of the observed pattern fit well in the hypothesis that the decay $f_{1}(1285) \rightarrow \pi^{+} \pi \pi^{0}$ is observed and that the mechanism of the isospin symmetry breaking, which has been predicted by Achasov and collaborators in 1979, works in this decay.
- From the observed number of events in ($\eta \pi^{+} \pi^{-}$) and $\left(\pi^{+} \pi^{-\pi^{0}}\right.$) channels we determine the relative branching ratios.
Our estimations are obtained actually in restricted interval of $m\left(\pi^{+} \pi^{-}\right)$, between 960 and $1010 \mathrm{MeV} / \mathrm{c}^{2}$:

Branching ratios

$$
\begin{aligned}
& \frac{B R\left(f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{0}\left(0.96<m\left(\pi^{+} \pi^{-}\right)<1.01\right)\right)}{B R\left(f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}\right) \cdot B R(\eta \rightarrow \gamma \gamma)}= \\
& =(1.41 \pm 0.21 \pm 0.42) \%
\end{aligned}
$$

or

$$
\begin{aligned}
& B R\left(f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{0}\left(0.96<m\left(\pi^{+} \pi^{-}\right)<1.01\right)\right)= \\
& =(0.19 \pm 0.09) \%
\end{aligned}
$$

This value agrees with predictions of Achasov et al.

estimations

- For neutral $\mathrm{a}_{0}(980)$ $B R\left(a_{0}{ }^{0}(980) \rightarrow \pi^{+} \pi^{-}\right)=1.52 \pm 0.72 \%$
- $\operatorname{BR}\left(\mathrm{f}_{1}(1285) \rightarrow \mathrm{p}^{+--} \Pi^{-+}\right)<0.4 \%$ at 90% conf. level

