Измерение асимметрии инклюзивного рождения π^0 -мезонов на установке ПРОЗА-2

В. Мочалов

(от имени сотрудничества ПРОЗА-2)

Что мызнали о роли спина в сильных взаимодействиях

- Спиновые эффекты в сильных взаимодействиях малы:
 - Односпиновая асимметрия мала и адает с ростом энергии (m_q/√s)
 - Асимметрия гадает с ростом поперечного импульса.
- Спин протона состоит из спина кварков

Что такое односпиновая асимметрия

Поперечная плоскость

Вторичные частицы имеют азимутальную симметрию

$$A_N = \frac{L-R}{L+R}$$

Появляется азимутальная асимметрия

Формула вычисления односпиновой асимметрии

Односпиновая асимметрия определяется как

$$A_N^H(x_f, p_t) = \frac{1}{P_{target}} \frac{1}{\langle cos\phi \rangle} \cdot \frac{\sigma_{\uparrow}^H(x_f, p_t) - \sigma_{\downarrow}^H(x_f, p_t)}{\sigma_{\uparrow}^H(x_f, p_t) + \sigma_{\downarrow}^H(x_f, p_t)}$$

 P_{target} – средняя поляризация мишени;

 ϕ – азимутальный угол;

(При малых углах ϕ считается, что все вторичные частицы вылетают под азимутальным углом 0°).

Измеряемая асимметрия

$$A_N = \frac{D(x_f, p_t)}{P_{target}} \cdot A_N^{raw}(x_f, p_t) = \frac{D(x_f, p_t)}{P_{target}} \cdot \frac{n_{\uparrow}(x_f, p_t) - n_{\downarrow}(x_f, p_t)}{n_{\uparrow}(x_f, p_t) + n_{\downarrow}(x_f, p_t)}$$

D - фактор разбавления мишени (отношение числа взаимодействий на всей мишени к числу взаимодействий на водороде)

За счет чего может возникнуть односпиновая асимметрия?

- Односпиновая асимметрия требует:
 - Наличие переворота спина: должен существовать механизм, позволяющий адрону изменить направление спина
 - Разница фаз: разница фаз необходима, так как структура S ·(р × k) нарушает инвариантность обращения во времени

ОДНОСПИНО

 В жестких проц позволяет объя In this note we have pointed out that the asymmetry off a polarized target, and the transverse polarization of a produced quark in $e^+e^- \rightarrow q\bar{q}$, or in $qq \rightarrow qq$ at large p_T , or in leptoproduction, should all be calculable perturbatively in QCD. The result is zero for $m_a=0$ and is numerically small if we calculate m_a/\sqrt{s} corrections for light quarks. We discuss how to test the predictions.

n P is small, tests
a large-p_T production
% for p_T ≈ 2 GeV/c],
fragmentation effects
they cannot (by parity
arization. Consequentant polarizations in the
tradict either QCD or

d Repko PRL 41 1978

В формуле сечения процесса 2→2 нет спиновозависящих функций

$$E_h \frac{d\sigma^{AB \to hX}}{d^3 p_h} = \sum_{a,b,c,d} \int dx_a dx_b dz_h f_a(x_a) \cdot f_b(x_b) \cdot \frac{\hat{s}}{z_h^2 \pi} \frac{d\sigma^{ab \to cd}}{d\hat{t}} \delta(\hat{s} + \hat{t} + \hat{u}) \cdot D_{h/c}(z)$$

!Я:

Модели, объясняющие поперечные спиновые эффекты

•Основные модели, объясняющие возникновение поперечной односпиновой асимметрии

•Спин-зависящая поперечная Функция фрагментации (Эффект Коллинза)

$$D_{h/q^{\uparrow}}(z, \vec{p}_{\perp}) = D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^{N} D_{h/q^{\uparrow}}(z, p_{\perp}) \vec{S}_{q}$$

•Функция распределения партонов внутри поперечно поляризованного протона (Функция Сиверса)

•Причина возникновения не обсуждается, например

орбитальный момент

$$f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = f_{q/p}(x, \mathbf{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) \mathbf{S}_{\mathbf{T}} \cdot (\hat{\mathbf{P}})$$

•Вклад высших (Twist-3) диаграмм (Qiu-Sterman, Efremov, Koike)

•Данные вычисления связаны с функцией Сиверса

•Комбинация разных эффектов

Первые измерения односпиновой асимметрии в Протвино

 В 1978 г. (30 лет!) первые исследования с использованием поляризованной протонной мишени ИФВЭ-ОИЯИ

Поляризация в реакции

Поляризация *P(t)* в области 0<|t|<0.35 (GeV/c)² равна (5.0±0.7)%.

- Существует локальный минимум в области при t=-0.25 (GeV/c)^{2.}
- Поляризация имеет минимум в области минимума в дифференциальном сечении.
- Поляризация осциллирует.

Поляризация в реакциях

π -p↑→ ηn and π -p↑→ η '(958)n

- Поляризация в реакции тр → пп при 40 ГэВ велика в широком интервале 0.05<-t<1.6 (GeV/c)² и достигает величины А_N=(-44±11)% в области |t| 0.8-1.6 (GeV/c)²
- Минимум поляризации достигается в точке изменения наклона сечения
- Поляризация меняет знак при -t=1.8 (GeV2/c)².
- Среднее значение поляризации в реакции тр → η'(958)n в области 0.05< -t < 0.5 (GeV2/c)² составляет (-17±8)%.

'.D. Apokin et al., Z.Phys.C35:173,1987.

Асимметрия в реакциях

 π -p →ω(783)n μ π -p →f (1270)n

- ω регистрируется в моде распада πγ (branching 8.9%).
- Асимметрия велика в обеих реакциях
- Асимметрия минимальна примерно в области изменения наклона сечения как для ω,
 так и для f₂

Выводы из измерения асимметрии в зарядово-обменных реакциях

- Большие значения поляризации (асимметрии) были обнаружены при 40 ГэВ в реакциях $\pi^-p_\uparrow \to \pi^0$ n, $\pi^-p_\uparrow \to \eta$ n, $\pi^-p_\uparrow \to \eta$ '(958)n, $\pi^-p_\uparrow \to \omega$ (783)n, $\pi^-p_\uparrow \to f_2$ (1270)n
- Для всех реакций минимум асимметрии совпадает с изменением наклона дифференциального сечения
- Во всех реакциях наблюдаются осцилляции асимметрии
- Есть указание, что асимметрия больше по величине для «тяжелых» частиц и в области —t=1 (ГэВ/с)² асимметрия отрицательна, тогда как для т⁰-мезона положительна.
- Ни одна теоретическая модель НЕ может объяснить результаты измерений.

Асимметрия инклюзивного рождения π⁰-мезона в области фрагментации пучка

•Можно ожидать ненулевую асимметрию инклюзивного рождения частиц вблизи границы фазового объема

Асимметрия инклюзивного рождения π^0 в щентральной (x_F=0) области пр → π⁰X, Phys.Lett.В243,461 (1990)

Асимметрия в реакции $\pi^{-}p(d)_{\uparrow} \rightarrow \pi^{0}(\eta)X$ велика и не зависит от типа мишени. Результат не может быть объяснен в рамках моделей Сиверса и Коллинза.

Асимметрия в реакции <mark>рр, →π⁰X</mark> совпадает с нулем для всего интервала p_{T} , что подтверждает результат эксперимента Е-704 при энергии 200 ГэВ.

 $pp_{\uparrow} \rightarrow \pi^{0}X$, Phys.At.Nucl, 67 (2004) 1487

Первые результаты по измерению асимметрии в области фрагментации мишени.

 $\pi^-p_{\uparrow} \rightarrow \pi^0X$,

Phys.At.Nucl, 67 (2004) 1495

Асимметрия инклюзивного рождения т⁰-мезона в области фрагментации поляризованной протонной мишени была измерена в 1996-2002 в реакции

$$\pi^{\text{-}}p_{\uparrow}{\longrightarrow}\pi^{0}X$$

A_N возрастает по величине с ростом |x_F|, что совпадает с данными экспериментов E704 и STAR.

Измерение асимметрии в реакции <mark>рр</mark>,→π⁰X в области фрагментации мишени

- Измерения проведены в 2005 и 2007 гг. на канале 14.
- Пучок протоны с энергией 50 ГэВ, интенсивность – до 5.10⁶
- Гамма детектор матрица 30×24 ячеек свинцового стекла под углом 30° в лаб. системе, расстояние от мишени – 2.16 м.
- Триггер на энергию (в 2007 на поперечную энергию).

Исследование протонного пучка, выведенного с помощью монокристалла

- Исследования проводились в 2007 г.
- Интенсивность пучка до 104

Точность трековой системы

Разрешение каждой плоскости дрейфовой камеры 0,14 мм

Импульсный разброс пучка

- Разрешение трековой системы по импульсу 0.1%
- Угловая расходимость и импульсное разрешение протонного пучка 0.13%
- Число фоновых частиц менее 3·10-4

Пучок на мишени канала 14

- Спектр средних значений положения пучка за сброс и
- Зависимость среднего значения положения пучка от времени

Калибровка калориметра

- Калибровка на пучке 5 ГэВ
 - Сигнал в каждой ячейке 800 мВ при 5 ГэВ
 - Метод оборачивания матрицы
- Дополнительная калибровка всего детектора на массу т°-мезонов

Результаты калибровки

- Средняя чувствительность 2.3 МэВ/отсчет АЦП
- Калибровочные коэффициенты за 2 года почти не поменялись

Дополнительная калибровка на массу π°-мезона

- Фон под массовым спектром фитировался функцией а(x-x₀)²·e^{bx}
- Масса пары гамма-квантов фитировалось формулой:

$$dN/dM_{\gamma\gamma} \propto 1/(\sqrt{2\pi} \sigma_L M_{\gamma\gamma}) \exp[-(\ln(M_{\gamma\gamma}/m_L)/\sigma_L)^2/2]$$

Алгоритм восстановления у-квантов и тт⁰-мезонов

- Отбор кластеров:
 - Энергия центральной ячейки больше 100 МэВ
 - Энергия кластера >300 МэВ
 - В кластере по крайней мере 5 ячеек (минимум 3 по каждой координате)
 - Отсутствует второй максимум (Расстояние между гамма-квантами велико, нет перекрывающихся ливней)
- Поправка на «потерянную» энергию при регистрации
- Поправка энергии и координаты в зависимости от угла падения гамма-кванта

Поправка энергии и координаты

- Программа моделирования ливня подготовлена К. Шестермановым
 - Незарегистрированная энергия в калориметре достигает 15% при малых энергиях
- Дополнительные потери энергии и смещение координаты связаны с неортогональностью ливня относительно детектора
 - Смешение координаты около границ детектора составляет 2-3 см
- Алгоритм подготовлен
 - Л.Ф.Соловьевым и опубликован в
 - ПТЭ 4 (2006), стр. 24-38, препринт ИФВЭ 2005 – 26;
 - ПТЭ №4 (2007), с. 35-45,
 Препринт ИФВЭ 2006-26.

30.10.2008

Масса пи-0 мезона

Результат поправок

- Нижний (треугольники) набор данных без поправок, средний (квадраты) поправка на энергию, верхний с учетом поправки на угол
- Справа ширина π⁰-мезона

Массовые спектры в 2005 и 2007

М_{уу} при -0.30<x_F<-0.25 (слева) и -0.45<x_F<-0.40 (справа) в сеансах (красный) 2005 и (синий) 2007.

Распределение мониторов и кинематика эксперимента

Метод вычисления асимметрии

- Для одноплечевого детектора разработан метод вычисления асимметрии, основанный на том, что асимметрия вне массового пика равна нулю:
- Слева зависимость асимметрии от массы при р_Т>1.5 ГэВ, справа асимметрия для 220<m_{үү}<460

Пример поведения асимметрии

Алгоритм вычисления асимметрии

• При наличии сдвига асимметрии

$$A_{2\gamma}^{measured} = k \cdot A_{\pi^0}^{real} + A_{backgr}$$

- Подробно описано в ЯФ 67 (2004), стр.1520-1528,
 Препринт ИФВЭ 2003-21
- Фон фитировался константой

Исследование сходимости метода

Размер области фитирования 90-250 МэВ	-0.83	0.28
Размер области фитирования 100-160 МэВ	-0.77	0.29
Размер области фитирования 70-400 МэВ	-0.87	0.28
Фитирование с шириной 10 МэВ	-0.81	0.35
Фитирование с шириной 15 МэВ	-0.76	0.43
Сдвиг -10% (N1*1.2)	-0.83	0.29
Сдвиг -35% (N1*2.0)	-0.75	0.30
Сдвиг -35% (N1*0.5)	-0.73	0.29

• Систематическая ошибка метода мала

Ложная асимметрия

Асимметрия для данных одного знака поляризации

A_N в реакции $pp_{\uparrow} \rightarrow \pi^0 X$ (данные 2005+2007)

X _F	<p_></p_>	A _N ,%
-(0.13-0.11)	0.9	-(0.8±2.2)
-(0.17-0.13)	1.0	-(1.9±1.8)
-(0.21-0.17)	1.1	-(1.5±1.9)
-(0.25-0.21)	1.2	-(2.3±2.1)
-(0.35-0.25)	1.3	-(5.8±1.8)
-(0.45-0.35)	1.5	-(6.8±4.1)
-(0.60-0.45)	1.7	-(11.0±5.8)

 A_N = -(6.2±1.5) % в области -0.6<x_F<-0.25

Сравнение с результатами других экспериментов

- А_N инклюзивного рождения т⁰-мезона при 50 ГэВ в области фрагментации поляризованной частицы при 0.25<x_F<0.6 (6.2±1.5)% совпадает с результатами других измерений:
- A_N в реакции π⁻р_↑→π⁰X при 40 ГэВ (6.9±2.8)
- С данными эксперимента Е704 при 200 GeV (6.3±0.7)

Результаты измерения асимметрии на RHIC

 Поведение асимметрии при √s=200 повторяет результаты экспериментов на фиксированной мишени

Экспериментальные результаты и теоретические модели.

- После результатов экспериментов ПРОЗА, Е-704 и других теоретические модели стали интенсивно развиваться – в рамках функций Сиверса и Коллинза развиваются различные подходы с использованием, например, орбитального момента и хромомагнитного момента.
- Однако теоретические модели до сих пор не могут объяснить поляризацию (асимметрию) в эксклюзивных зарядово-обменных реакциях
- Расчеты для энергий RHIC хорошо совпадают с результатами в области больших |x_F|, однако:

Обсуждение

- Большие значения асимметрии инклюзивного рождения пионов (ПРОЗА и ФОДС) в центральной области НЕ могут быть объяснены в рамках современных моделей.
- Расчеты в рамках моделей Сиверса и высших твистов предсказывают уменьшение асимметрии с ростом р_Т (что противоречит экспериментам при энергиях ИФВЭ)
- При этом асимметрия инклюзивного рождения в области фрагментации поляризованной частицы НЕ зависит от энергии пучка (как и поляризация гиперонов), таким образом:

Исследование спиновых эффектов при промежуточных энергиях (40-70 ГэВ) пучка – необходимый и полезный инструмент изучения поляризационных эффектов в различных реакциях

Высокая точность измерения может быть важнее, чем высокая энергия

Задача нового эксперимента – прецизионное измерение асимметрии в рождении легких резонансов в нейтральных и заряженных модах:

С.И.Алехин, Н.И.Беликов, А.Н.Васильев, А.С.Вовенко, Ю.М.Гончаренко, В.Н.Гришин, А.М.Давиденко, А.А.Деревщиков, В.А.Качанов, А.С.Кожин, Д.А.Константинов, В.А.Кормилицин, В.И.Кравцов, А.К.Лиходед, А.В.Лучинский, Ю.А.Матуленко, Ю.М.Мельник, А.П. Мещанин, Н.Г.Минаев, В.В.Мочалов, Д.А.Морозов, Л.В.Ногач, С.Б.Нурушев, А.В.Рязанцев, П.А.Семенов, Л.Ф.Соловьев, С.Р.Слабоспицкий, А.Ф.Прудкогляд, А.В.Узунян, М.Н.Уханов, Ю.В.Харлов, Б.В.Чуйко, А.Е.Якутин

"Polarization data has often been the graveyard of fashionable theories.

If theorists had their way, they might just ban such measurements altogether out of self-protection."

J.D. Bjorken

NATO Advanced Research Workshop on QCD Hard Hadronic Processes St. Croix, 1987

Содержание

- Роль спина в сильных взаимодействиях
- Возникновение односпиновой асимметрии
- Измерение односпиновой асимметрии на установке ПРОЗА
 - в зарядово-обменных реакциях.
 - в инклюзивных реакциях:
 - в центральной области
 - в области фрагментации неполяризованного пучка
 - в области фрагментации мишени
 - Исследование асимметрии в сеансах 2005 и 2007 гг.
- Обсуждение
 - Сравнение результатов эксперимента ПРОЗА с другими экспериментами
 - Результаты по измерению A_N и теоретические модели.

Волоконный годоскоп

Характеристики волоконного годоскопа

- Сигнал в волоконном годоскопе (слева)
- Профиль пучка в волоконном годоскопе (справа)

Реальная картинка

Аппаратура для измерения пучка

	Тип	L _{магн} , мм	Шаг, мм	N каналов
H1	Волоконный годоскоп	-21287	0.88	16
H2	Волоконный годоскоп	-8587	0.88	16
DC1	Дрейфовая Камера	-8060	12.	16
DC2	Дрейфовая Камера	-3440	12.	16
DC3	Дрейфовая Камера	+3100	12.	16
DC4	Дрейфовая Камера	+9100	12.	16

Сходимость калибровки на массу

- Распределение средних значений массы после первой итерации (слева)
- Ширина распределения в зависимости от числа итераций

Привязка пучка к мишени

Привязка по отношению событий на пустой и углеродной мишени

Калибровка триггерного сигнала

 Малый разброс триггерных коэффициентов (слева) обеспечил хороший триггер на суммарную энергию в калориметре (справа)