The 3rd Light Ion Nuclear Collision Workshop

S. N. Ershov

Joint Institute for Nuclear Research

Radioactive Nuclei: Structure and Reactions

Presently ~ $\mathbf{3 6 0 0}$ nuclei have been observed, less than $\mathbf{3 0 0}$ nuclei are stable

NUCLEAR STRUCTURE NEAR THE VALLEY OF STABILITY

exhibit similar binding for neutrons and protons density and diffuseness of the surface are nearly constant the resulting shell structure is well established
M. Goeppert-Mayer, J.H.D. Jensen, nobel prize in 1963 "for their discoveries concerning nuclear shell structure" magic numbers : 2, 8, 20, 28, 50, 82, 126 are the same for neutrons and protons
${ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{48} \mathrm{Ca},{ }^{208} \mathrm{~Pb}$: stable double - magic nuclei
nuclear potential is well parametrized
pronounced shell closures define the effective degrees of freedom needed for a quantitative understanding of atomic nuclei
A.N. Bohr, B.R. Mottelson, L.J. Raynwater, nobel prize in 1975
"for the discovery of the connection between collective motion and particle motion in atomic nuclei and the development of the theory of the structure of the atomic nucleus based on this connection"

Conceptual framework of nuclear structure is the nuclear shell model

Qualitative picture:

nucleons are moving almost independently in a mean-field (self-consistent) potential obtained by averaging out the interactions between a single nucleon and all remaining protons and neutrons.

accounting for the residual interaction between the nucleons

Nuclear structure of exotic nuclei is different from that around the stability line and represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties

Unique factors

 for exotic nucleithe weak binding, closeness of the particle continuum (a large diffuseness of the nuclear surface, extreme
exotic combinations of proton and neutron numbers (prospects for completely new structural phenomena)
\square limits of nuclear existence ?
\square properties of nuclei with an extreme N / Z ratio ?
\square the shell structure evolution towards driplines ? (disappearance of magic numbers, new magic numbers, ...)
\square the mechanism of binding of exotic nuclei?
\square exotic few-body systems ?
\square nuclear systems beyond driplines ?
\square the effective nucleon-nucleon forces at limits of stability?
\square the role of correlations in the low-density nuclear zone?
\square clusters features of exotic nuclei?

The location of the neutron drip line is known up to Oxygen
FRDM : P. Moller et al, At. Data Nucl. Data Tables 59 (1995) 185.
HFB-8 : M. Samyn et al, Phys. Rev. C70, 044309 (2004).

BREAKDOWN OF THE N = $\mathbf{2 0}$ SHELL CLOSURE IN EXOTIC NUCLEI

in stable nuclei the shell gap $\mathrm{N}=20$ is formed between the $d_{3 / 2}$ and $f_{7 / 2}$ orbits originating from the $\mathbf{N}=\mathbf{2}$ and $\mathbf{N}=\mathbf{3}$ major oscillator shells

In neutron-rich isotopes with $\mathbf{Z = 1 0 - 1 2}$ fp shells are intruder states in $s d$ shells ("island of inversion") \rightleftharpoons strong mixing \Longleftrightarrow deformation)

BREAKDOWN OF THE N = 8 SHELL CLOSURE IN EXOTIC NUCLEI

Magic number 8 comes from any mean-field description. Large distances in energy for any central potential (square well, harmonic oscillator, Woods-saxon, ...)
\longrightarrow the $0 p$ states are well separated from the $1 s 0 d$ ones.
The inversion of the p and s shell for the ground-states of the $N=7$ Evidences: isotones close and beyond the dripline reflects the disappearance of the $N=8$ shell gap. The ground state of ${ }^{11} \mathrm{Be}$ is $1 / 2^{+}$instead of $1 / 2^{-}$

Evidences: knockout reaction ${ }^{9} \mathrm{Be}\left({ }^{12} \mathrm{Be},{ }^{11} \mathrm{Be}+\mathrm{g}\right)$ at $\mathbf{7 8} \mathrm{MeV} /$ nucleon

A. Navin et al, PRL 85 (2000) 266

The ground state of ${ }^{11} \mathrm{Be}$ accounts for approximately two-thirds of the cross section. It is direct proof of a significant occupancy of the $1 s_{1 / 2}$ state in ${ }^{12} \mathrm{Be}$

Spectroscopic factors

$$
C\left(s_{1 / 2}\right) \sim 0.42 ; C\left(p_{1 / 2}\right) \sim 0.37
$$

THE EMERGENCE OF A NEW SHELL FOR OXYGEN ISOTOPES AT N = 16

A consequence of the disappearance of the $\mathbf{N}=20$ shell closure is the emergence of a new magic number at $\mathrm{N}=16$, formed in ${ }^{24} \mathrm{O}_{16}$ between the occupied $s_{1 / 2}$ and the unbound valence $d_{3 / 2}$ orbit. This gap amounts to about 4 MeV and the $d_{3 / 2}$ orbit is unbound by about 1.5 MeV . The neutron-neutron interactions due to the filling of this orbit do not suffice to bind the ${ }^{26,28} \mathrm{O}_{18,20}$

Evidences:

Survey of neutron separation energies.
Sudden increase of interaction cross sections σ_{1} were observed in the F, O and N sotopes at $N \simeq 15$. The σ_{I} values for the ${ }^{23} \mathrm{O}$ and ${ }^{25} \mathrm{~F}$ isotopes could be reproduced with a dominance of the $\mathrm{s}_{1 / 2}$ shell for a valence orbit.
m $N=16$ corresponds to the last bound nucleus not only for oxygen $\left({ }^{24} \mathrm{O}\right)$ but also for nitrogen $\left({ }^{23} \mathrm{~N}\right)$ and even carbon $\left({ }^{22} \mathrm{C}\right)$.
T. Ozawa et al, PRL 84 (2000) 5493

ANOMALOUS DEFORMATION MODES

the density distributions of neutrons and protons are similar in nuclei close to stability: if one distribution is spherical, then the other will be spherical. (one has a prolate deformation, the other will have a prolate deformation)
experimental studies of the collectivity of the first excited 2^{+}state in ${ }^{16} \mathrm{C}$ suggest pure neutron prolate deformation, with the protons residing in a spherical core

N. Imai et al, PRL 92 (2004) 062501
H. J. Ong et al, PRC 73 (2006) 062501

A remarkably small $B(E 2)=0.26$ W.u. was found for ${ }^{16} \mathrm{C}$ through a lifetime measurement (probes the charge contribution). The observed value (in W.u.) is far smaller than any other $B(E 2)$ measured on the nuclear chart.

Inelastic proton scattering on ${ }^{16} \mathrm{C}$ (sensitive to both proton and neutron contributions) was used to determine the neutron collectivity of the 2^{+}state.

A combination of these two measurements allows one to disentangle the proton and neutron collectivities for the 2^{+}state.
new dripline phenomenon with clusterization into an ordinary core nucleus and a veil of halo nucleons - forming very dilute neutron matter

Neutron number
Chains of the lightest isotopes
($\mathrm{He}, \mathrm{Li}, \mathrm{Be}, \mathrm{B}, \ldots$) end up with two neutron halo nuclei
Two neutron halo nuclei (${ }^{6} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{14} \mathrm{Be}, \ldots$)
break into three fragments and are all Borromean nuclei
One neutron halo nuclei (${ }^{11} \mathrm{Be},{ }^{19} \mathrm{C}, \ldots$) break into two fragments

Neutron halo nucled

Halo

$\left({ }^{6} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{11} \mathrm{Be},{ }^{14} \mathrm{Be},{ }^{17} \mathrm{~B}, \ldots\right.$)
weakly bound systems with large extension and space granularity
"Residence in forbidden regions"
Appreciable probability for dilute nuclear matter extending far out into classically forbidden region

Separation energies
of last neutron (s) : $\frac{\text { halo }}{<1} \quad \frac{\text { stable }}{6-8 \mathrm{MeV}}$ $\varepsilon\left({ }^{11} \mathrm{Li}\right)=0.3 \mathrm{MeV}$ $\varepsilon\left({ }^{11} B e\right)=0.5 \mathrm{MeV}$ $\varepsilon\left({ }^{6} \mathrm{He}\right)=0.97 \mathrm{MeV}$

Large size of halo nuclei
$\left\{\begin{aligned}<\mathbf{r}^{2}\left({ }^{11} L i\right)>1 / 2 & \sim 3.5 \mathrm{fm} \\ (\text { r.m.s. for } \mathrm{A} & \sim 48)\end{aligned}\right.$

Two-neutron halo nuclei (${ }^{11} \mathrm{Li},{ }^{6} \mathrm{He},{ }^{14} \mathrm{Be},{ }^{17} \mathrm{~B}, \ldots$)

Borromean system is bound	none of the constituent two-body subsystems are bound

Peculiarities of halo nuclei: the example of ${ }^{11} \mathrm{Li}$

(i) weakly bound: the two-neutron separation energy ($\sim 300 \mathrm{KeV}$) is about 10 times less than the energy of the first excited state in ${ }^{9} \mathrm{Li}$.
(ii) large size: interaction cross section of ${ }^{11} \mathrm{Li}$ is about 30% larger than for ${ }^{9} \mathrm{Li}$

This is very unusual for strongly interacting systems held together by short-range interactions

Interaction radii: $\sigma_{\mathrm{I}}=\pi\left(\mathbf{R}_{\mathbf{1}}(\mathbf{p r o j})+\mathbf{R}_{\mathbf{1}}(\mathbf{t} \text { arg })\right)^{2}$

$$
\begin{gathered}
\text { E / A = } 790 \text { MeV, light targets } \\
\text { I. Tanihata et al., } \\
\text { Phys. Rev. Lett., } 55 \text { (1985) } 2676
\end{gathered}
$$

(iii) very narrow momentum distributions, compared to stable nuclei, of both neutrons and ${ }^{9} \mathrm{Li}$ measured in high energy
 fragmentation reactions of ${ }^{11} \mathrm{Li}$.
No narrow fragment distributions in breakup on other fragments, say ${ }^{8} \mathrm{Li}$ or ${ }^{8} \mathrm{He}$

(naive picture)

narrow momentum distributions
\qquad
large spatial extensions
(iv) Relations between interaction and neutron removal cross sections (mb) at $790 \mathrm{MeV} / \mathrm{A}$

$\mathrm{A}+{ }^{12} \mathrm{C}$	σ_{1}	$\sigma_{-2 n}$	$\sigma_{-4 n}$
${ }^{9}$ Li	$796 \mu 6$		
${ }^{11}$ Li	$1060 \mu 10$	_220﹎ 40	
${ }^{4} \mathrm{He}$	$503 \mu 5$		
${ }^{6} \mathrm{He}$	$722 \mu 5$	189 $\mu 14$	
${ }^{8} \mathrm{He}$	$817 \mu 6$	$202 \mu 17$	$95 \mu 5$

$$
\sigma_{I}(\mathbf{A}=C+x n)=\sigma_{I}(C)+\sigma_{-x n}
$$

Strong evidence for the well defined clusterization into the core and two neutrons

Tanihata I. et al.

PRL, 55 (1987) 2670;
PL, B289 (1992) 263
(v) Electromagnetic dissociation cross sections per unit charge_are orders of magnitude
halo
larger than for stable nuclei
Evidence for a rather large difference between charge and mass centers in a body fixed frame

concentration of the dipole strength at low excitation energies
T. Kobayashi, Proc. 1st Int. Conf. On Radiactive Nuclear Beams, 1990.

Soft Excitation Modes

(peculiarities of low energy halo continuum)

Large EMD cross sections $\boldsymbol{\square}$

specific nuclear property of extremely neutron-rich nuclei

excitations of soft modes with

- different multipolarity
- collective excitations versus direct transition from weakly bound to continuum states
(vi) Ground state properties of ${ }^{11} \mathrm{Li}$ and ${ }^{9} \mathrm{Li}$:

Schmidt limit : 3.71 n.m.
Previous peculiarities cannot arise from large deformations core is not significantly perturbed by the two valence neutrons

Nuclear charge radii by laser spectroccopy

R. Sanches et al., PRL 96 (2006) 033002
L.B. Wang et al., PRL 93 (2004) 142501

(vii) The three-body system ${ }^{11} \mathrm{Li}\left({ }^{9} \mathrm{Li}+\mathbf{n}+\mathbf{n}\right)$ is Borromean: neither the two neutron nor the core-neutron subsytems are bound

Three-body correlations are the most important: due to them the system becomes bound.

"The Borromean rings, the heraldic symbol of the Princes of Borromeo, are carved in the stone of their castle in Lake Maggiore in northern Italy. The three rings are interlocked in such a way that any of them were removed, the other two would also fall apart. In nuclear physics ${ }^{11} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ have been found to have this property (although for quite different physical reasons) when described in a three-body model. "
M.V. Zhukov et al., Phys. Rep. 231 (1993) 151

Peculiarities of halo

in ground state
weakly bound, with large extension and space granularity

in low-energy continuum

concentration of the transition strength near break up threshold

- soft modes

BASIC dynamics of halo nuclei

Decoupling of halo and nuclear core degrees of freedom

$$
\Phi\left(\overline{r_{1}}, \ldots, \overline{r_{A}}\right)=\phi_{C}\left(\overline{\xi_{1}}, \ldots, \overline{\xi_{A_{C}}}\right) \psi(\bar{x}, \bar{y})
$$

Correlation density for the ground state of ${ }^{6} \mathrm{He}$

$$
P\left(r_{n n}, R_{n n-C}\right)=r_{n n}^{2} R_{n n-C}^{2} \frac{1}{2 J+1} \sum_{M} \int d \Omega_{n n} d \Omega_{n n-C}\left|\Phi_{J M}\left(\bar{r}_{n n}, \bar{R}_{n n-C}\right)\right|^{2}
$$

cigar-like configuration

dineutron configuration

Halo scattering on nuclei

Continuum Spectroscopy

Two-body breakup

Three-body breakup

Excitation Energy

$$
E_{\kappa}=\hbar^{2} k_{X}^{2} / 2 \mu_{\mathrm{x}} \quad \mid \quad E_{\kappa}=\hbar^{2} k_{X}^{2} / 2 \mu_{\mathrm{x}}+\hbar^{2} k_{Y}^{2} / 2 \mu_{\mathrm{Y}}
$$

Orbital angular momenta

$$
\boldsymbol{Y}_{l_{X} m_{X}}\left(\boldsymbol{\Omega}_{X}\right) \quad\left[\boldsymbol{Y}_{l_{X}}\left(\boldsymbol{\Omega}_{X}\right) \otimes \boldsymbol{Y}_{l_{Y}}\left(\boldsymbol{\Omega}_{Y}\right)\right]_{L M_{L}}
$$

Spin of the fragments

$$
\left[\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{C}\right]_{S_{S}}{ }_{\substack{\text { Hypermoment }}}\left[\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} \otimes \boldsymbol{S}_{C}\right]_{S M_{S}}
$$

$$
N=2 n+l_{X}
$$

$$
K=2 n+l_{X}+l_{Y}
$$

Energy and angular fragment correlations

$0<E_{k}<1 \mathrm{MeV}$

L.V. Chulkov et al., Nucl. Phys. A759, 23 (2005)

CONCLUSIONS

$\square \quad$ The field of exotic nuclei due to the impressive advance in experimental methods is one of the fastest developing subjects in nuclear physics. Research on unstable nuclei has achieved significant progress over the last few decades.
\square The dramatic evolution of nuclear shell structure have been revealed for nuclei with large isospin asymmetries. New forms of nuclear matter such as the neutron halo not encountered in normal stable nuclei have been observed.
\square Development of new experimental techniques for production and /or detection of radioactive beams is the way to unexplored
" TERRA INCOGNITA"

