LINC2008

Summary

A.Zaitsev Protvino 20.06.08

Light ions in U-70

and the second second		Beam intensities	
Ions	N _{B0}	$qN_{\rm B0}$	weight
proton <i>p</i>	2-9·10 ¹¹	2-9.10 ¹¹	1
deuteron d	1.10^{11}	1.10^{11}	10
carbon 12C6+	3·10 ⁹	2·10 ¹⁰	50

In-out sensitivity of beam diagnostics

+

Vacuum system (MCS, ionization losses) WP, resonances and dynamic aperture

Accelerator, 34 GeV/u

Extended cycle, $\max M = 29$

Slow extraction by septum

and extraction by bent crystals

STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS

Meson spectroscopy

VES (IHEP)

VES layout

Экспериментальная установка

• Рис.1 Схема установки

С1, С2 – пучковый стинциляционный и Si-годоскоп;
С3, С4 – мишенная станция и вершинный Si-детектор (АМ и ВД);
1, 2, 3 – трековый детектор на минидрейфовых трубках (МД);
4 – пропорциональные камеры магнитного спектрометра (МС);
5 – пороговый черенковский счётчик (ЧС);
6 – сцинтиляционный годоскоп (СГ);
7 – детектор гамма-квантов (ДЕГА)

STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS

Schematic layout of SPIN@U70

STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS

FODS-2 Layout

VES Mesonic resonances in carbon in "backward" kinematics

Enn

ъ

ar ar

SVD

 Energy dependence of inclusive π⁰, η, ω, f₂, K⁰ ... in carbon A ->X
 (as suggested by Sadovskiy and Kharlov)

Without tracking Magnet on – magnet off

 SVD vs Hyperon
 High granularity of lead glass spectrometer
 Fast DAQ
 Good beam
 Big team

 In more distant future – reconstruction of min bias

FODS

- study high ג' processes in pp-, pA- א AAinteractions
- We propose to measure the process with hydrogen and nuclei targets to study the effects of nuclei transparency.
- Cross section of the elastic scattering *do/ dt* at 90° in c.m.s. for 30 GeV protons is about ~ 10-10 mb/(GeV/c)2
- Total number of collected events for 30 day exposure for hydrogen target, 0.05 *lint* length and beam intensity 109 ppp will be ~ 1500.

SPIN

Energy flow

Channel 22 for cumulative reactions at 0^o

- Thin dE/dx
- TOF
- Cerenkov
- X=3 -> 210 GeV
- -> Ein = 1/3 Emax

X

What else

p_T distributions: pions (π^+ , π^- , π^0)

Collision

C+Pb

• C+C

• d+C

Total

multiplicity

102

29

7

p_T distrbutions: nucleons

Collision	Total multiplicity	Multiplicity p _T >0.1 GeV.c
 C+Pb 	p: 91, n: 122	p: 80, n: 107
• C+C	p: 11, n: 11	p:10, n: 10
• d+C	p: 7, n: 7	p: 5, n: 5

Full reconstructic

π.

Multiplicity

p,>0.1 GeV.c

87

25

6

P

10⁻⁵

10⁻³

Dedicated facility for fragments study

