

Status of the Large Hadron Collider

Philippe Lebrun CERN, Geneva, Switzerland

All-Russian Particle Physics Community Meeting IHEP Protvino, 22 December 2008

Advanced technology at work

23 km of superconducting magnets cooled in superfluid helium at 1.9 K

Main parameters of LHC (p-p)

Circumference	26.7	km
Beam energy at collision	7	TeV
Beam energy at injection	0.45	TeV
Dipole field at 7 TeV	8.33	Т
Luminosity	10 ³⁴	cm ⁻² .s ⁻¹
Beam current	0.56	A
 Protons per bunch 	1.1×10^{11}	
 Number of bunches 	2808	
 Nominal bunch spacing 	24.95	ns
Normalized emittance	3.75	μm
Total crossing angle	300	μ rad
Energy loss per turn	6.7	keV
Critical synchrotron energy	44.1	eV
Radiated power per beam	3.8	kW
 Stored energy per beam 	350	MJ
 Stored energy in magnets 	11	GJ
Operating temperature	1.9	К

Critical current density of technical superconductors

Cost structure of the LHC accelerator

90 main industrial contracts in the world

Procurement & installation logistics Quality & quantity at the right time in the right place

Installed in LHC tunnel: 50 000 t

Transported throughout Europe: ~150 000 t

A global project spanning space...

Preliminary conceptual studies	1984
First magnet models	1988
Start structured R&D program	1990
Approval by CERN Council	1994
Industrialization of series production	1996-1999
DUP & start civil works	1998
Adjudication of main procurement contracts	1998-2001
Start installation in tunnel	2003
Cryomagnet installation in tunnel	2005-2007
Functional test of first sector	2007
Commissioning with beam	2008
Operation for physics	2009-2030

Twin-aperture dipole magnet

Field reproducibility/precision $\sim 10^{\text{-3}}$ Field homogeneity $\sim 10^{\text{-4}}$

 \Rightarrow Winding precision < 0.05 mm

Cryogenic tests of magnets

Dipole field quality in series production

Sorting reduces dispersion

sector

Cryomagnet installation in tunnel

Interconnections in tunnel

65'000 electrical joints Induction-heated soldering Ultrasonic welding *Very low residual resistance HV electrical insulation* 40'000 cryogenic junctions Orbital TIG welding

> Weld quality Helium leaktightness

Group

Installation and commissioning of LHC Vacuum systems

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Successful commissioning of the cold vacuum systems

Insulation + beam vacuum

Bake out of the last sector in ALICE May '08

Installation of the last LHC beam pipe in ATLAS Detector

Vacuum Group (VAC) Accelerator and Technology Department (AT) Plenary Meeting, 15th Dec'08

Grou

Vacuum of the LHC transfer lines has been successfully commissioned

Vacuum Group (VAC) Accelerator and Technology Department (AT) Plenary Meeting, 15th Dec'08

Eight 18 kW @ 4.5 K cryogenic plants

33 kW @ 50 K to 75 K 23 kW @ 4.6 K to 20 K 41 g/s liquefaction

600 kW precooling to 80 K with LN2 (up to ~5 tons/h)

First cool-down of LHC sectors

◆ ARC56_MAGS_TTAVG.POSST ■ ARC78_MAGS_TTAVG.POSST ▲ ARC81_MAGS_TTAVG.POSST ◆ ARC23_MAGS_TTAVG.POSST
 ◆ ARC67_MAGS_TTAVG.POSST ■ ARC34_MAGS_TTAVG.POSST ▲ ARC12_MAGS_TTAVG.POSST ● ARC45_MAGS_TTAVG.POSST

Supply of cryogenic fluids

Large projects cooled by superfluid helium

Tore Supra tokamak, Cadarache (France) CEBAF accelerator, Newport News (USA)

He II inventory

Refrigeration power < 2 K

LHC magnet string cooling scheme

CERN AC _ EI2-12 VE _ V9/9/1997

Cryogenic operation of LHC sector

Cold compressors for 1.8 K refrigeration

Cartridge 1st stage

4 cold compressor stages

LHC cryogenics on 10 September 2008

AT-CRG - Plenary

AT-CRG, 09 Dec 2008

High-precision, modular switched-mode power converters

High-precision DCCT

SECTOR 5-6

10 September 2008- first beam in LHC

First beam – 10 September 2008

Beam on turns 1 and 2 – 10 September 2008

Few hundred turns

Integer tune measurements

Fractional tune measurements

Dump dilution sweep

SDDS Default View Type and Value Name Axis acqTypeMaxNumber (short[]:5) -> 0, 0, 1, 0, 0 Active keys : [X] -> x axis, [Y] -> y axis, [Z] -> z axis (image), [D] -> display line, [H]-> display histogram, [SPACE] -> clear, [T] -> time/numbers on x axis Data for Cycle: -200 100 п (-58.3544, -62.7396, 461) -100 -200 100 -200 -100 п 200 4 Point # 31852 X -58.35440000000005 Y -62.7396 Z 461.0

Beam transverse profile: horizontal wire scan

No RF, debunching in ~ 250 turns

Beam capture by RF

Image:	ile Edit View Project Operate Tools Window		TekT
Hundrain Range Image: Image: <	C Rev C III 13pt Application Font	CH1 INVERTED!!!	2 MR T
Image:	H1 Mountain Dance	Choose Chappels to acquire: Date:	
	H1 Mountain Range	Choose Channels to acquire: Date: CHI CH2 CH3 CH4 2008-09-11 ON OFF OFF OFF Tme: File Index for next Save 22:43:36 22:43:36 First Trigger Dms Time between Traces I Turn Multiply Data with Scale Factor (dB) \$D Bunch Length at Position Discussion Min Estimated Bunch Length 2.14n 13:45n \$In Stime of Stiffst Defore acquisition) \$1.000 \$With cable Without cable Scope released	

19 September incident at LHC sector 3 4 Electrical arc between two magnets

Splice in 12 kA bus bar

Collateral damage: magnet displacements

Collateral damage: ground supports

Longitudinal displacements in damaged area

Displacements status in sector 3-4 (From Q17R3 to Q33R3) ; P3 side

Based on measurements by TS-SU, TS-MME and AT-MCS

	Q17	A18	B18	C18	Q18	A19	B19	C19	Q19	A20	B20	C20	Q20	A21	B21	C21	Q21
Cryostat Cold mass	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5
	Q21	A22	B22	C22	Q22	A23	B23	C23	Q23	A24	B24	C24	Q24	A25	B25	C25	Q25
Cryostat Cold mass	<2 <5	<2 <5	<2 <5	<2 <5	-7 -25	<2 -67	<2 -102	<2 -144	-187 <5	<2 -190	<2 -130	<2 -60	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5
	0.05				0.00	107	0.07	0.07	0.07								0.00
	Q25	A26	B26	C26	Q26	A27	B27	C27	Q27	A28	B28	C28	Q28	A29	B29	C29	Q29
Cryostat Cold mass	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 57	<2 114	<2 150?	474 -45	-4 230	<2 189	<2 144	11 92? Vert	<2 50	<2 35	<2 <5	<2 <5
	Q29	A30	B30	C30	Q30	A31	B31	C31	Q31	A32	B32	C32	Q32	A33	B33	C33	Q33
Cryostat Cold mass	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 19	<2 77	<2 148	188 <5	<2 140	<2 105	<2 62	5 18	<2 <5	<2 <5	<2 <5	<2 ?
>0 [mm] ?	SSS wit Towards Values a Not mea Cold ma Cryosta	h vacuur s P4 are in mr asured ye ass displa t displace	n barrier n et acement ement	*	Open in Electrica Dipole in Electrica Buffer zo	terconne al interruj n short ci ally dama ones	ction ptions ircuit aged IC		Disconn	ected	l	J					

Detection of resistive zones by He II calorimetry Methodology

- 1. Assessment of the baseline slope (remaining CV opening mismatch w/r to static HL)
- 2. Assessment of the temperature increase during powering plateau
- 3. Assessment of the internal energy variation (J/kg)
- 4. Assessment of the deposited energy assuming a mass of 26 l/m of LHeII

Detection of resistive zones by He II calorimetry Experimental validation

Detection of resistive zones by He II calorimetry Experimental validation

	Before heating	With heating			
∆U [J/kg]	-1.1 78				
M [kg]	82	23			
∆U [k]]	-0.92	64.2			
t [s]	2880	6600			
W [W]	-0.3	9.7			
∆ ₩ [₩]	10.0				

→ The power variation calculated by He II calorimetry is 10.0 W, corresponding to the applied electrical power
 → The method is validated and able to resolve ~ W

Calorimetry during 15R1 powering @ 5000A

The 15R1 case: additional heat dissipation due to a bad splice

Current	Total (m	easured)	Nominal Splices*	Add. local dissipation	Uncertainty
[A]	[mW/m]	[W]	[W]	[W]	[W]
3000	4.4	1.0	0.4	0.6	0.6
5000	14.9	3.2	1.1	2.1	0.6
7000	32.2	6.9	2.1	4.8	0.6

*: Calculated on the basis of 0.33 nW per splice and verified with the 5000 A plateaus

→ Local resistance: ~90 nohms confirmed by electrical measurement !

 \rightarrow Nominal dissipation 13 W: OK w/r to the cooling loop capacity margin

Installation of 8 nanovoltmeters for monitoring interconnections in half œlls 15&16 Sector 1-2

56

Results of resistance measurements

Channel	Resistance	No of splice	es R/ Splice
CH1	1.18	3	0.39
CH2	1.07	3	0.36
CH3	0.75	2	0.38
CH4	0.97	3	0.32
CH5	0.96	3	0.32
CH6	0.48	2	0.24
CH7	1.13	3	0.38
CH8	1	3	0.33
		Average	0.34
		StDev	0.05

Channel	Resistance	No of splices	R/ Splice
CH11	1.069	3	0.36
CH12	1.14	3	0.38
CH13	0.694	2	0.35
CH14	0.81	3	0.27
CH15	0.99	3	0.33
CH16	0.75	2	0.38
CH17	1.175	3	0.39
CH18	0.98	3	0.33
		Average	0.35
		StDev	0.04

Half-cells 15&16

Half-cells 17&18

Sector A12: A15R1 – C19R1 Internal splice measurements by « snapshot »

FR

U_QS0 => -(U_1+U_2) Sampling Rate = 5ms Resolution = 0.125mV Quench Threshold = 100mV@10ms

Sector A12: A15R1 – C19R1 Internal splice measurements by « snapshot »

FR

100 n Ω resistance in dipole B16.R1 in the splice between the two apertures

ERN

Sector A12: A15R1 – C19R1: Dipole Measurements made on 03.11.08

Snapshot measurements on all 154 dipoles in S 67 and 78 B32.R6 shows 47 n Ω joint resistance between poles of one aperture

Results from provoked massive Post-Mortem of all dipoles in sectors 67 & 78

- 53 magnets (39 dipoles and 14 SSS) to be removed from the tunnel
- All fully disconnected
- 47 magnets removed by end 2008, leaving 6 for 2009
- 4 dipoles reinstalled by end 2008

19 September incident at LHC sector 3 4 Magnet removal from the tunnel

19 September incident at LHC sector 3 4 Magnet repair in SMI2

