

Grid to the LHC start

(still)

V.A. Ilyin

Russia Tier2 facilities in World-wide LHC Computing Grid

• RuTier2 - federation of several (now 6) centers of the Tier2 functionality:

MC generation, analysis of real data, users data support

and other (now 5) of Tier3 functionalyty:

local user support

• each RuTier2 site operates for <u>all four</u> experiments - ALICE, ATLAS, CMS and LHCb, thus

sharing CPU and partitioning storage resources between Experiments at each Tier2 site

RuTier2 in the World-Wide Grid

RuTier2 Computing Facilities are operated by

Russian Data-Intensive Grid (RDIG)

RDIG is national segment in the European grid infrastructure EGEE

http://www.egee-rdig.ru

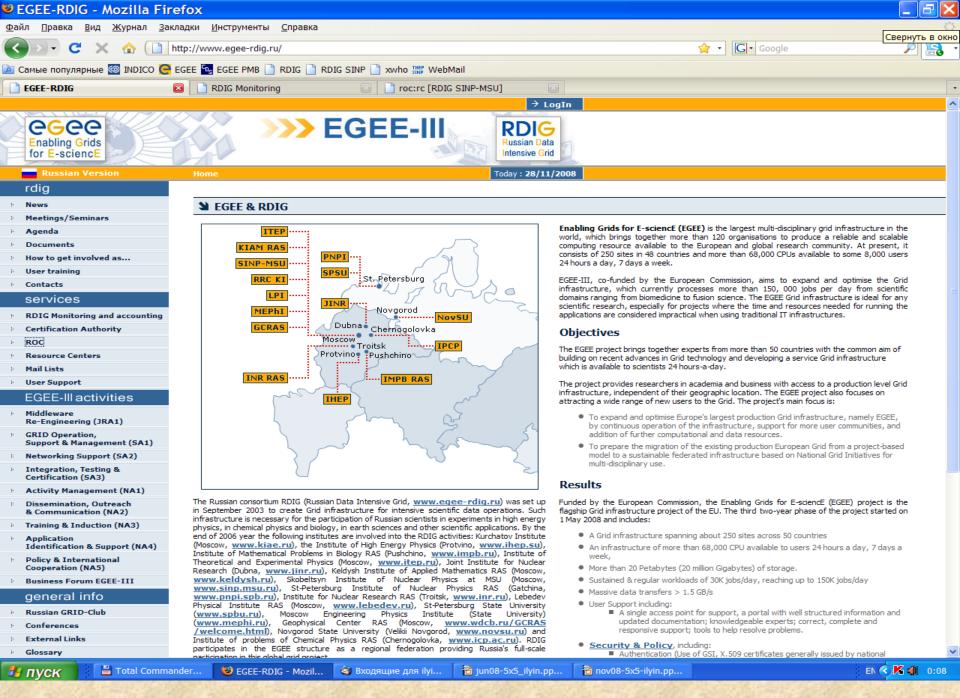
being starting structure toward the **NGI** (National Grid Infrastructure) collaborating with **EGI** – European Grid Initiative (Infrastructure)

RDIG provides basic grid services for RuTier2 sites:

support VOs, RB/WMS, information system, ROC

CA and security

monitoring and accounting


user support

- SINP MSU

- RRC KI

- JINR

- ITEP

International Connectivity (bandwidth view)

1) GEANT2

PoP (connected to Moscow G-NAP) operates in JSCC RAS (Moscow) since December 2006, now bandwidth 2.5 Gbps.

10 Gbps upon the real request by RDIG and LCG real use by RuTier2 sites during this year

- stable file transfer at the level > 20 Mbyte/s (max 70 Mbyte/s)

2) RBNet-GLORIAD now bandwidth 1 Gbps

RuTier2 sites have started real use in September 2009

CMS FNAL T1 -> Moscow T2s (RRC KI, SINP MSU) file transfer

we see 20 Mbyte/s++, but still unstable (probably problems with networking cross

Europe - under investigation)

3) RUNNet link

Moscow (G-NAP) – Stockholm (NORDUNet-GEANT2) – Amsterdam (SURFNet-CERN-GEANT2) - USA

today total bandwidth 10 Gbps

RuTier2 sites have started real use in September 2009

CMS Taiwan T1 -> Moscow T2s (RRC KI, SINP MSU) file transfer we see 20 Mbyte/s++, but still unstable (probably problems with networking cross

Europe – under investigation)

REGIONAL CONNECTIVITY

(bandwidth view)

Moscow 1 Gbps (RRC KI, SINP MSU, ITEP, MEPhI, ...)

10 Gbps: RRC KI Q1 2009

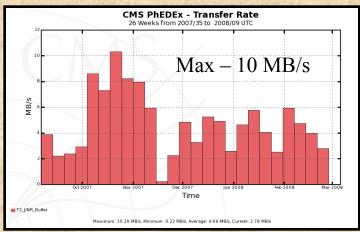
SINP MSU mid 2009

IHEP (Protvino) 100 Mbps

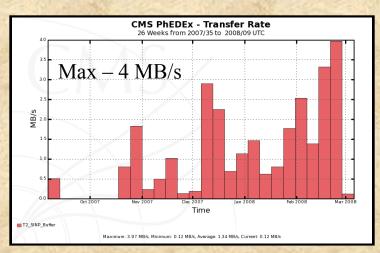
Q1 2009 1 Gbps ++, then go to 10 Gbps

JINR (Dubna) 1 Gbps,

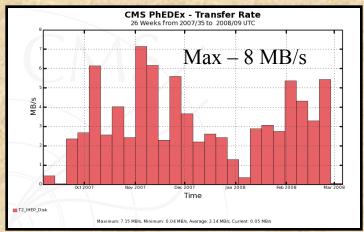
10 Gbps - Q1 2009

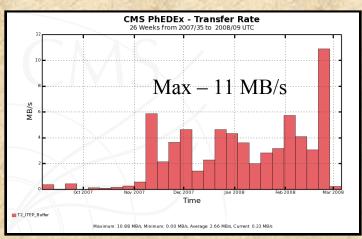

BINP (Novosibirsk) 45-100 Mbps

INR RAS (Troitsk) 1+1 Gbps o/f to Moscow


PNPI (Gatchina) 1 Gbps link to St-Petersburg, real use 100 Mbps

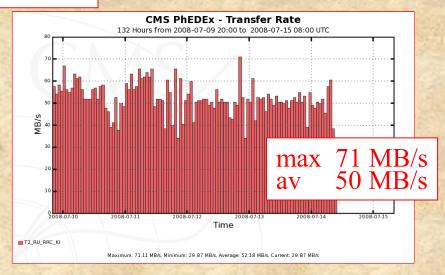
SPbSU (St-Petersburg) 1 Gbps

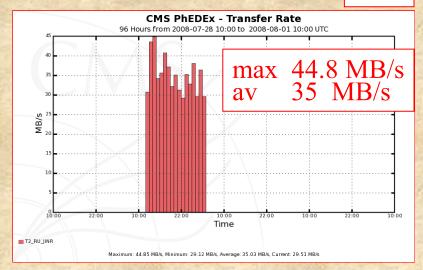

CERN -> RDMS sites Phedex Transfer Rates (October 2007 – March 2008)

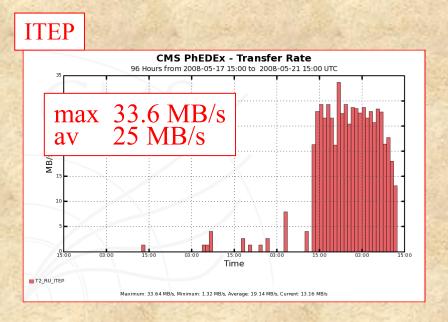

CERN-JINR Transfers

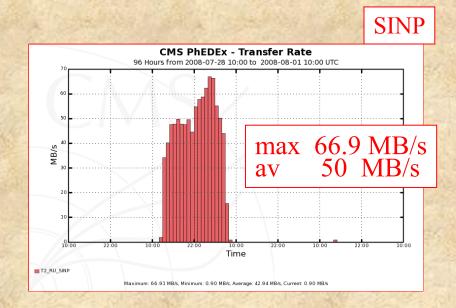
CERN-SINP Transfers

CERN-IHEP Transfers




CERN-ITEP Transfers


Transfer Rates during Phedex Load Tests May-Sept 2008


RRC-KI

JINR

RuTier2 resources

End of 2008, installed and available for WLCG:

- 3800++ KSI2K CPU
- 600+ TByte Disk
- no Tape

Budget 2008 from FASI was 4 MCHF, additional budget from JINR and local sites (MEPhI, INR RAS, LPI ...) ~1 MCHF, altogether resulted in

resources available for WLCG at the beginning of 2009:

- 4000-4500++ KSI2K CPU (pledged 3800 KSI2K)
- 1700+ TByte Disk (pledged)
- no Tape

Now the request for 2009 budget is preparing based on requirements by Experiments

- to be fixed in March 2009.

WLCG T2 resources accounting CPU pledged inc. efficiency in September 2008

2008 CPU Pledge (KSIZ	2K efficiency	ALICE	ATLAS	CMS	LHCb	Total used as % pledged
JINR		240,080	160,818	143,637	5,686	550,221
RRC-KI		170,694	78,667	54,685	1,968	306,014
SINP-MSU		23,873	35,282	21,537	5,083	85,775
ITEP		53,585	5,955	19,795	16,814	96,149
PNPI		43,364	69,359	7,729	6,140	126,592
IHEP		17,794	32,288	16,213	3 2,34	0 68,635
INR RAS		8		142	426	576
MEPhI		R Transfer	334		100	334
SpbSU		371				371
FIAN (LPI)			209			209
RU-RDIG 3,	000 1,296,000	549,769	382,912	263,738	38,457	1,234,876 <u>95%</u>

November 79% Start of new installations

Oct 2008 C-RRB: Capacities and procurements

- The WLCG MB has agreed that with the information currently available to us and the present understanding of the accelerator schedule for 2009:
 - The amount of data gathered in 2009 is likely to be at least at the level originally planned, with pressure to run for as long a period as possible this may be close to or exceed the amount originally anticipated in

2008 + 2009 together

- The original planning meant that the capacity to be installed in 2009 was still close to x2 with respect to 2008 as part of the initial ramp up of WLCG capacity
- Many procurement and acceptance problems arose in 2008 which meant that the 2008 capacities were very late in being installed; there is a grave concern that such problems will continue with the 2009 procurements
- The 2009 procurement processes should have been well advanced by the time of the LHC problem in September
- The WLCG MB thus does not regard the present situation as a reason to delay the 2009 procurements, and we urge the sites and funding agencies to proceed as planned. It is essential that adequate resources are available to support the first years of LHC data taking.

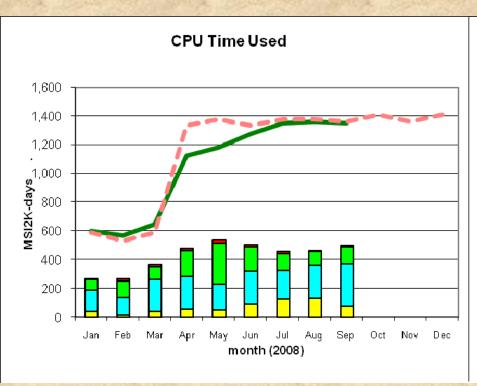
To meet the 2009 resource requirements:

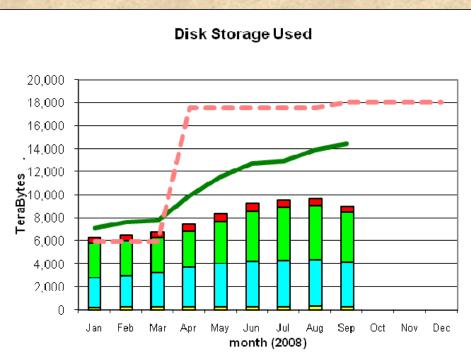
Resources available for WLCG at the beginning of 2009:

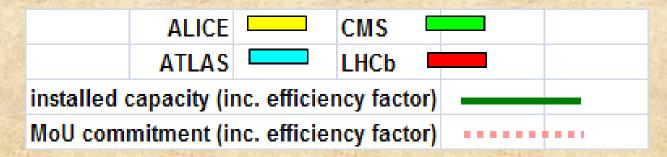
- 4000-4500++ KSI2K CPU (2009 pledged 3800 KSI2K)
- 1700+ TByte Disk (2009 pledged)

However we have no still clear understanding of the experiment resource requests for 2009:

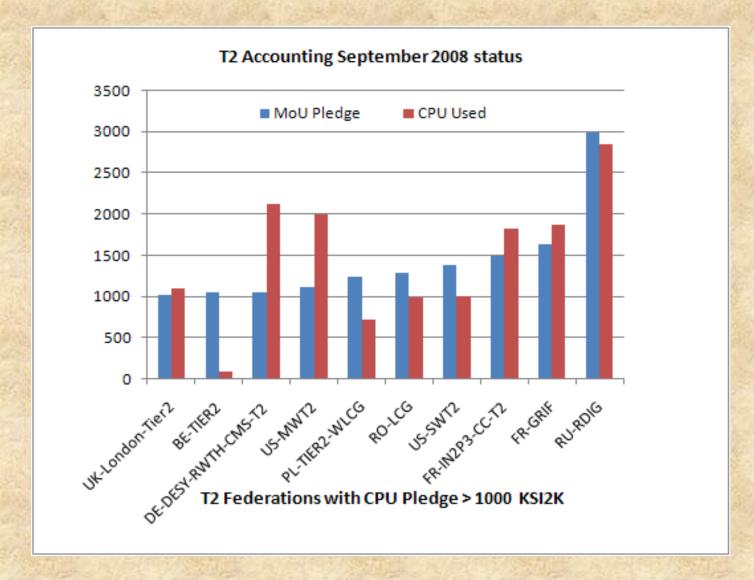
- is it true that 2009 data = former «2008+2009» plans?
- MC production should be continued at the level of 2008?

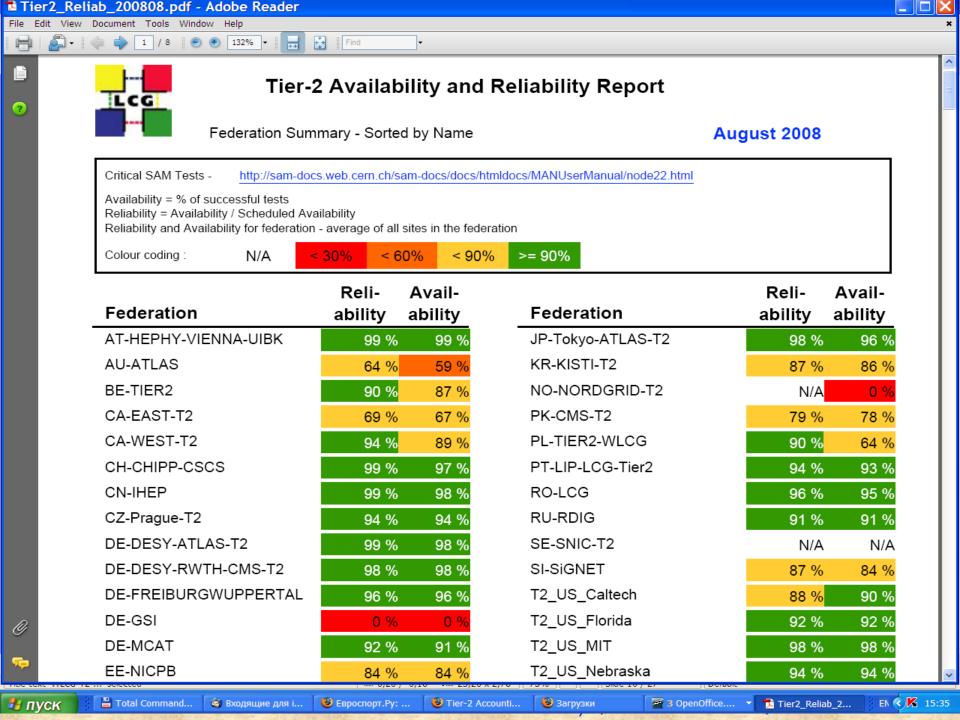

Thus, we should understand more deeply why

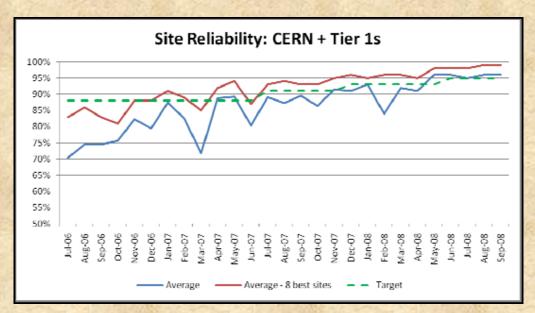

the capacity to be installed in 2009 still close to x2 with respect to 2008?


Институт	Наличие ресурсов к 01.11.08		2008 зак контра	упки по ктам БАК	2008 зан контракт рез		Закупки и средств 2008 по м	з собств. с ноября арт 2009	Ресурсы к марту 2009	
РНЦ КИ	1000	218	1000,0	450,0					2000,0	668,0
ОИЯИ	1500	83	345,0	297,9	103,5		103,5	55,9	2052,0	436,8
ИТЭФ	232	52	276,0	102,4					503,0	154,4
ИФВЭ	200	40	241,5 102,4						441,5	142,4
ПИЯФ	250	50	138,0 71,4						388,0	121,4
ФRИИН	315	61	103,5 102,4						418,5	163,4
МИФИ	357	39	34,5	20,5			26,0	5,0	417,5	62,5
ИЯИ РАН	154	3	103,5	41,0				41,0	257,5	85,0
СПБГУ	40	5	69,0	18,2					109,0	23,2
ФИАН	56	16	34,5	20,5				14,0	90,5	50,5
ИЯФ СО РАН (вне WLCG)	36	8	54,0	12,0					90,0	20,0
ИТОГО	4140	575	2399,5 1238,6		103,5 0,0		129,5 115,9		6767,5	1927,5

WLCG Computing Resources Review Board (C-RRB) – 11th Nov 2008 CERN-RRB-2008-104, Oct. 2008





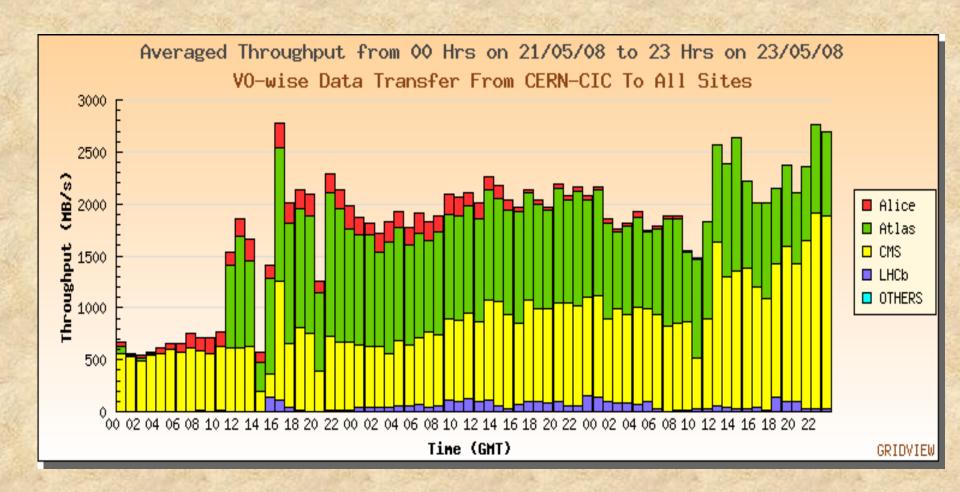

WLCG Computing Resources Review Board (C-RRB) – 11th Nov 2008 CERN-RRB-2008-104, Oct. 2008



ATLAS Functional Tests monitoring page (generated on

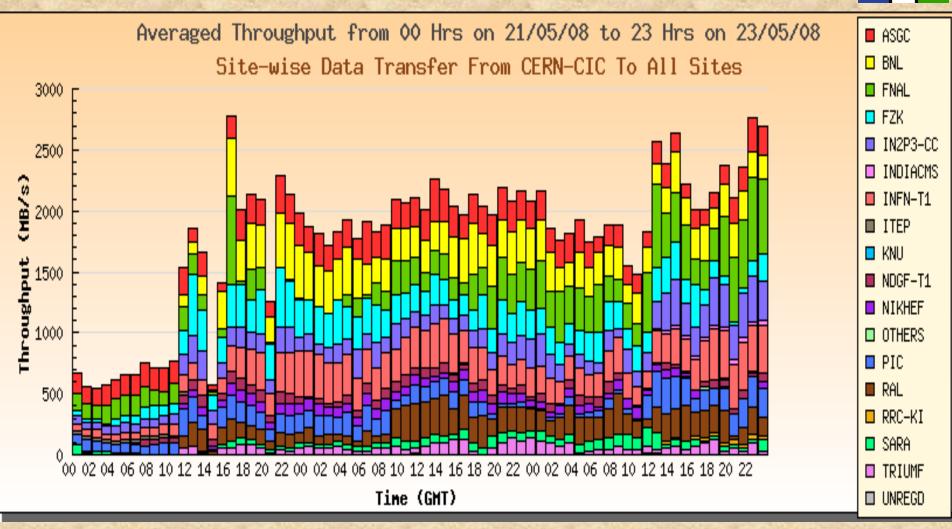
2008-10-25 12:15:04 CERN)

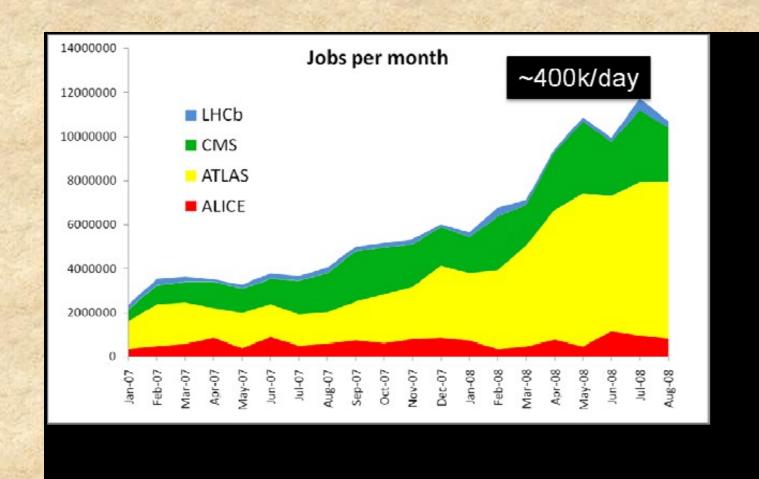
BNL	AGLT2* (130/130)	MWT2* (130/130)	NET2* (130/10)	ou*	SLACXRD* (130/130)	SMU	SWT2* (130/10)	UCT3	UTD
CNAF	FRASCATI* (56/0)	MILANO* (56/56)	NAPOLI* (130/74)	ROMA1* (130/74)					
FZK	CSCS* (22/22)	CYF* (108/108)	DESY HH* (130/130)	DESY ZN* (22/22)	GOEGRID* (108/108)	HEPHY UIBK* (22/22)	LRZ* (22/22)	MPPMU* (108/108)	PRAGUE* (108/108)
LYON	BEIJING* (50/50)	CPPM* (12/12)	IN2P3 CC_PHYS TOP	LAL* (10/10)	LAPP* (12/12)	LPC* (35/35)	LPNHE* (50/50)	LPSC* (11/11)	NIPNE_02* (21/21)
NDGFT	IJST2	SIGNET* (108/108)							
PIC	IFAE* (6/6)	IFIC* (66/66)	LIP COIMBRA	LIP LISBON	LIP LISBON_DATADISK	i	PIC_PHYS TOP	UAM* (58/58)	
RAL	BHAM* (3/3)	BRUN* (13/13)	CAM* (24/24)	DUR* (13/13)	ECDF* (15/15)	GLASGOW* (48/48)	LANCS* (4/4)	LIV* (12/12)	MANC
SARA	CSTCDIF (44/44)	IHEP* (90/90)	ITEP* (23/23)	JINR* (11/11)	PNPI* (78/78)	RRC KI* (41/41)	SINP* (23/23)	TR 10 LAKBIM* (35/35)	


25/10/2008

Report on ALICE groups' activity (01.09.2008 - 30.09.2008)

	Pledged	Delivered		Occupancy	Efficiency		Job statistics	Storage				
Group	KSI2K	CPU	Wall	Wall/Pledged	CPU/Wall	Assigned	Completed	Efficiency	Size	Used	Usage	
1. CERN	1102	89.24	132.9	12.06%	67.15%	56393	29476	52.27%	5.477 PB	3.71 PB	67.73%	
2. China	0	-	-	-		-	-	-	-	1-		
3. Czech Republic	95	83.27	96.22	101.3%	86.54%	9979	7947	79.64%	20.67 TB	10.64 TB	51.48%	
4. Germany	3292	1004	1134	34.47%	88.54%	140721	95080	67.57%	5.933 PB	262.7 TB	4.324%	
5. Greece	80	28.84	33.69	42.12%	85.61%	2861	1980	69.21%	E	-		
6. HLT	60	-	-	5		-	-	-	-			
7. Hungary	90	38.55	44.31	49.23%	87.01%	6298	4502	71.48%	9-	-	£ 7	
8. IN2P3	1904	1019	1147	60,27%	88.87%	182390	104139	57.1%	1.763 PB	131.4 TB	7.282%	
9. INFN	1776	481.8	710.5	40.01%	67.81%	168028	55596	33.09%	1.068 PB	102.4 TB	9.37%	
10. India	450	0.011	13.09	2.91%	0.086%	22752	0	0		1-		
11. Mexico	22	2.994	3.924	17.83%	76.31%	498	181	36.35%	100	12		
12. NDGF	1193	409.7	483.3	40.51%	84.77%	73273	44358	60.54%	930.8 TB	202.5 TB	21.76%	
13. Other	5	72	-		-			-	4	72		
14. Poland	226	225.6	258.2	114.3%	87.38%	32458	20139	62.05%	-			
15, RDIG	1059	470.7	607.1	57.33%	77.52%	77768	43227	55.58%	107.9 TB	690.4 GB	0.6259	
16. Republic of Korea	132	41.54	55.35	41.93%	75.05%	1442	755	52.36%	-	-		
17. Romania	675	576.8	654.8	97.01%	88.08%	78739	46424	58.96%	121.6 TB	14.14 TB	11.639	
18. Slovakia	80	0.785	0.824	1 029%	95.34%	136	0		-			
19. South Africa	10	2	2	. 2	92		2	2	7.4		in a	
20. Spain	239	63.93	75.89	31.75%	84.24%	7629	6061	79.45%		8-		
21. The Netherlands	475	480.9	528.9	111.4%	90.92%	65000	54908	84.47%	2-	16		
22. UK	182	0.142	0.15	0.083%	94.18%	96	0	0	90.95 PB	60 KB	09	
23. US	1100	0	0.877	0.08%	0.024%	1509	19	1.259%	-	¢-		
24. Ukraine	1130	20.7	22.47	1.969%	92.1%	2511	1045	41.62%	-	-		
Total	15377	5040	6005			930481	515837		106.3 PB	4.417 PB		


WLCG Project Status Report Resource Review Board – 11th Nov 2008 CERNRRB2008101, I. Bird


WLCG Project Status Report Resource Review Board – 11th Nov 2008 CERNRRB2008101, I. Bird

WLCG Project Status Report Resource Review Board – 11th Nov 2008 CERNRRB2008101, I. Bird

CMS RDMS computing requirements development in 2008

Basic requirements to CMS T2 sites for Physics group hosting:

- a) regular file transfer test "OK"
- b) CMS job robot test "OK"
- c) disk space ~ 100 TB for:
 - primary data sets (~30TB)
 - physics group space (~30TB)
 - MC samples (~30TB)
 - local CMS users space (~10 TB)

Challenge:

- end 2008 to provide efficient access to 10 TeV MC samples for RDM5 physicists
- 2009 reconstruction of SM processes and objects

CMS – Tier-2 allocation – DRAFT

	T2_AT	T2_BE	T2_BR	T2_DE	T2_CH	T2_EE	T2_ES	T2_FI	T2_FR	T2_IT	T2_K R	T2_RU	T2_TW	T2_U K	T2_US	Totals
FWD phys				1											1	2
QCD				1		1			1						1	4
Higgs							1			1				1	1	4
EWK							1		1	1				1	1	5
SUSY	1			1						1					1	4
Тор		1					1		1	4.6			1		1	5
Exotica									1			1		1	1	4
B Physics					1			1							1	3
Heavy lons												1				1
egamma									1	1				1	1	4
Jets /M is s E T								1			1	1			1	4
HCAL											·					
Muons							1			1		1			1	4
B-Tagging	1			1					1						1	4
Tracker			1						1	1					1	4
Particle Flow									1	1					1	3
Trigger DPG	1			1			1							1	1	4
Current Resources	0	1	1	3	0	1	5	2	8	5	1	1	0	4	15	48
Fall Resources	2	1	1	5	1	1	5	2	9	7	1	4	1	5	15	60

June 27, 2008 CMS Week 24

Subscription of ATLAS FDR data in Russian sites

- Rates of FDR data replicated to RuTier2 sites:
 - JINR-LCG2_DATADISK: 50% Jet (RU-PROTVINO-IHEP_DATADISK)
 - JINR-LCG2 DATADISK: 50% MinBias (RU-PROTVINO-IHEP DATADISK)
 - JINR-LCG2 DATADISK: 50% Muon (RU-PROTVINO-IHEP DATADISK)
 - JINR-LCG2 DATADISK: 50% Bphysics (RU-PNPI_DATADISK)
 - RU-PROTVINO-IHEP DATADISK: 50% Jet (JINR-LCG2 DATADISK)
 - RU-PROTVINO-IHEP_DATADISK: 50% Muon (JINR-LCG2_DATADISK)
 - **RU-PROTVINO-IHEP_DATADISK: 50% MinBias (JINR-LCG2_DATADISK)**
 - RU-PROTVINO-IHEP DATADISK: 50% Egamma (RU-PNPI DATADISK)
 - RU-PNPI DATADISK: 50% Egamma (RU-PROTVINO-IHEP DATADISK)
 - RU-PNPI_DATADISK: 50% Bphysics (JINR-LCG2_DATADISK)
 - **RU-PNPI DATADISK: 50% Jet (RRC-KI DATADISK)**
 - RU-PNPI_DATADISK: 50% MinBias (RRC-KI_DATADISK)
 - RRC-KI DATADISK: 50% Jet (RU-PNPI DATADISK)
 - RRC-KI_DATADISK: 50% MinBias (RU-PNPI_DATADISK)
 - RRC-KI_DATADISK: 50% Egamma
 - RRC-KI DATADISK: 50% Bphysics

25/10/2008

Summary - end 2008 - to 2009

> Six basic RuTier2 sites show stable work in WLCG and ready to first data coming:

RRC KI, JINR, SINP MSU, ITEP, IHEP, PNPI

> 5 sites are of Tier3 level and are preparing to serve local users:

INR RAS, MEPHI, LPI, StPSU, BINP

- New challenge coming from the physics analysis groups in Experiments: new requirements for T2 resource installation.
- Old issues with networking the progress is significant.
- Regular resource development more understanding is needed for 2009 resource installations.