Latest New Phenomena Results from

Alexey Popov (IHEP, Protvino)

RAS, IHEP, Protvino 23.12.2008

For the DØ Collaboration

New Phenomena with

> Supersymmetry:

- Squarks/Gluinos
- Charginos/Neutrallinos

Leptoquarks (1,2,3 generation)

- > Large Extra Dimensions
- Long-lived Particles

Results from 1-3 fb⁻¹ of data

1

Supersymmetry

➢Most studied extension of the Standard Model to solve some of its shortcomings

 \succ New (s)particles, differing from their SM partners by spin 1/2

R-parity:

$$R_{p} = \begin{cases} +1, & \text{for SM} \\ -1, & \text{for SUSY} \end{cases}$$

MSSM: R-parity conservation -LSP is stable, s-partners are created in pairs

SUSY must be broken: mSUGRA, GMSB etc.

>mSUGRA parameters: $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$

Supersymmetry: squarks and gluinos

- MSSM (mSUGRA)
- R-parity conserved (LSP stable)
- \geq 2jets + MET

Low M_0 , $m(\tilde{q}) < m(\tilde{g})$ (at least 2 jets) "di-jet" Medium M_0 , $m(\tilde{q}) \approx m(\tilde{g})$ (at least 3 jets) "3-jet"

High m_0 , $m(\tilde{q}) > m(\tilde{g})$ (at least 4 jets) "gluino"

Squarks and gluinos: results

Corresponding previous limits (D0, ³¹⁰ pb⁻¹) are improved by 54 and 67 GeV

RAS, IHEP, Protvino, 23.12.2008

4

Squarks and gluinos: results

Yellow band: variations due to PDF uncertainties and renormalization/factorization scale variations

Search for pair production of the ⁶ supersymmetric partner of the top quark $\tilde{t}_1 \overline{\tilde{t}}_1 \rightarrow b \overline{b} e \mu \tilde{v} \overline{\tilde{v}}, \quad \tilde{v}-LSP$

Charginos and Neutrallinos: 31 - state

Gaugino pair production via EW interactions

• Small cross-sections (0.1 – 0.5 pb)

- **R-parity conservation:** LSP stable
- LSP escapes detection: large MET
- **SUSY signature:**
 - Two electrons or muons
 - Third lepton
 - Large MET

Small cross-sections but very clean signatures

Trilepton results

Leptoquarks

 Leptoquark – boson with third-integer charge, carrying lepton and quark quantum numbers (GUT, Technicolor, Compositeness)
 Three generation, each coupled to one fermion generation only
 Pair production: no dependence from LQ coupling to *l* and *q*

 $\beta = BR(LQ \to lq)$

 $BR(LQ \rightarrow vq) = 1 - \beta$

Leptoquarks: First Generation $ightarrow p\overline{p} \rightarrow LQ_1\overline{LQ_1} \rightarrow eeqq, \quad \beta=1$

- Scalar and vector leptoquarks
- > Vector leptoquarks: VM-type ($T_3 = -1/2$, $Q_{em} = 1/3$, $\lambda = e$)
- ≻ Cross section depends on the LQ mass and "anomalous couplings" $\{k_G, \lambda_G\}$
- \succ {*k_G* = 1, λ_G = 0} (Minimal Coupling, MC),

 $\{k_G = 0, \lambda_G = 0\}$ (Yang-Mills Coupling, YM),

 $\{k_G = -1, \lambda_G = -1\}$ (Minus Minus Coupling, MM)

Leptoquarks: First Generation

Leptoquarks: Second Generation

- Scalar leptoquarks
- $p \overline{p} \to LQ_2LQ_2 \to \mu\mu qq$ $p \overline{p} \to LQ_2LQ_2 \to \mu\nu qq$
- > BR($\mu\mu qq$)= β^2 , max at β =1 BR($\mu\nu qq$)= $2\beta(1-\beta)$, max at β =0.5

CDF Run II (198 pb⁻¹) **M(LQ)>208 GeV (μμ,μν,νν)**

Exceed the corresponding previous bounds by 65 GeV $(D0, 290 \,\text{pb}^{-1})$

Leptoquarks: third generation (\u03c0b \u03c0 b state)

$p\overline{p} \rightarrow LQ_3LQ_3 \rightarrow \tau b\tau b, \tau_1 \rightarrow \mu \nu_{\mu} \nu_{\tau}, \tau_2 \rightarrow hadrons$

Best previous limit for this channel is 99 GeV

CDF (VLQ₃, 322 pb⁻¹): **M(LQ)** > 235 GeV (β =1)

Search for scalar Leptoquarks and T-odd quarks in the acoplanar jet topology

> Topology: two acoplanar jets and large missing E_T

- ► Leptoquarks: $p\overline{p} \rightarrow LQLQ \rightarrow \nu\nu qq$, $\beta=0$. Most stringent limit: $M_{LQ} > 136 \text{ GeV}$ (D0, 310 pb⁻¹)
- ➤ Little Higgs Model with T-parity (LHT): T-odd quarks $\tilde{Q} \rightarrow q\tilde{A}_H$ \tilde{A}_H Lightest T-odd Particle (LTP), stable and weakly interacting. $p\bar{p} \rightarrow \tilde{Q}\tilde{Q} \rightarrow qq\tilde{A}_H\tilde{A}_H$ same topology as for the leptoquarks.
- > Most stringent limit: $M_{\tilde{0}} > 100 \text{ GeV}$ (LEP)
- $> 2.5 \text{ fb}^{-1} \text{of Run II data}$

Search for scalar Leptoquarks and T-odd quarks in the acoplanar jet topology

RAS, IHEP, Protvino, 23.12.2008

15

Large Extra Dimensions

 $\gg p\overline{p} \rightarrow \gamma G_{KK}$ - single photon + missing E_T (2.7 fb⁻¹)

Large Extra Dimensions

Existence of LED can be probed by searching for the effect of G_{KK} on fermion or boson pair production
 Effect on cross-section depends from M_s (M_s and M_D are of the same order of magnitude)

Long-lived particles

Several SUSY scenarios: long-lived τ̃ or χ̃[±]
 LLP pair production: detecting in outermost DZero muon system and has relatively large time of flight

 $M_{LLP} > 206 \text{ GeV}$ (Gaugino-like $\tilde{\chi}^{\pm}$), $M_{LLP} > 171 \text{ GeV}$ (Higgsino-like $\tilde{\chi}^{\pm}$)

LEP limit for stable charginos: 104 GeV

Alexey Popov (IHEP, Protvino)

RAS, IHEP, Protvino, 23.12.2008

For the DØ Collaboration

Conclusion

Many searches for beyond Standard Model effects are progressing at the Tevatron, you can find all results on the WWW DØ NP page: http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm CDF "Exotic" page: http://www-cdf.fnal.gov/physics/exotic/exotic.html

- Standard Model works pretty well and no significant deviations so far have been observed at DØ and CDF for now...
- ➤ All search analyses are benefiting from more data and we expect with 9-10 fb⁻¹ in Run II to increase data set by a factor of ~5 - 10
- Discoveries might come stay tuned!

Backup slides

Squarks and gluinos: results

	Data	SM exp.	Signal
di-jet	11	$11.1 \pm 1.2^{+2.9}_{-2.3}$	$10.4 \pm 0.6^{+1.8}_{-1.8}$
3-jet	9	$10.7 \pm 0.9^{+3.1}_{-2.1}$	$12.0 \pm 0.7^{+2.5}_{-2.3}$
gluino	20	$17.1 \pm 1.1^{+5.5}_{-3.3}$	$17.0 \pm 1.2^{+3.3}_{-2.9}$

$$\begin{array}{l} \textbf{mSUGRA parameters} \\ tan \ \beta = 3, \ A_0 = 0, \ \mu < 0 \\ m_0 = 25 \, \text{GeV}, \ m_{1/2} = 175 \, \text{GeV} \quad ("\text{di-jet"}) \\ m_{\tilde{q}} = m_{\tilde{g}} = 400 \, \text{GeV} \quad ("3\text{-jet"}) \\ m_0 = 500 \, \text{GeV}, \ m_{1/2} = 110 \, \text{GeV} \quad ("\text{gluino"}) \end{array}$$

Charginos and Neutrallinos: 3l - state ee + l (588 pb⁻¹ Run IIb)

Cut	Data	SM expected	mSUGRA
Preselection	64877	65393 ± 104	9
Anti-Z	5577	6566 ± 36	5.3
Third Track	182	208 ± 7	2.9
MET	1	1.5 ± 0.4	1.9
MET x pT(3)	0	1.0 ± 0.3	1.4

$$\tan \beta = 3, A_0 = 0, \mu > 0$$

$$m_{\tilde{\chi}^{\pm}} = 125 \,\text{GeV}$$

$$m_{\tilde{\chi}^{0}_{2}}^{\pm} = 127 \,\text{GeV}$$

$$m_{\tilde{\chi}^{0}_{1}}^{\pm} = 69 \,\text{GeV}$$

$$m_{0} = 98 \,\text{GeV}, m_{1/2}^{\pm} = 192 \,\text{GeV}, m_{\tilde{l}}^{\pm} = 129 \,\text{GeV}$$

Perspective

Run II Integrated Luminosity

19 April 2002 - 7 December 2008

Alexey Popov (IHEP, Protvino)

RAS, IHEP, Protvino, 23.12.2008

For the DØ Collaboration