Наблюдение Ω_b бариона на установке D0, FNAL

Вертоградов Л.С. от коллаборации D0

Научная сессия-конференция секции ядерной физики ОФН РАН Институт физики высоких энергий Протвино, 22-25 декабря, 2008.

Наблюдавшиеся b-барионы

До недавнего времени только один барион наблюдался напрямую:

 Λ_b^{θ} (udb): $\Lambda_b^{\theta} \rightarrow J/\psi + \Lambda^{\theta}$ UA1: PL B273, 540 (1991)

Однако, за последние два года в Лаборатории Ферми было открыто ещё 4 бариона:

$$\begin{split} \boldsymbol{\Sigma}_{b}^{+}(\boldsymbol{u}\boldsymbol{u}\boldsymbol{b}), \ \boldsymbol{\Sigma}_{b}^{-}(\boldsymbol{d}\boldsymbol{d}\boldsymbol{b}): \ \boldsymbol{\Sigma}_{b}^{\pm} \to \boldsymbol{\Lambda}_{b}^{\theta} \ \pi^{\pm} \to (\boldsymbol{\Lambda}_{c}^{+} \pi^{-}) \ \pi^{\pm} \\ & \quad \text{CDF: PRL 99, 202001 (2007)} \end{split}$$

 $\Xi^{-}(dsb): \Xi_{b}^{-} \rightarrow J/\psi + \Xi^{-}(D0, CDF); \ \Xi_{b}^{-} \rightarrow \Xi_{c}^{0}\pi^{-}(CDF);$ D0: PRL 99, 052001 (2007); CDF: PRL 99, 052002 (2007)

$$\Omega_b^-(ssb): \Omega_b^- \to J/\psi + \Omega^- \to J/\psi + (\Lambda^0 K^-)$$

D0: PRL 101, 232002 (2008)

Поиск
$$\Omega_b^-$$
, J=1/2

- bss комбинация кварков
- ≻Предсказываемая масса: 5.94 - 6.12 GeV/c²
- ≻0.83<τ(Ω_b)<1.67 ps
- $> M(\Omega_b) > M(\Lambda_b)$

Детектор & Экспериментальные данные

Последовательность анализа

Отбор Ј/ψ кандидатов	Повторная обработка отобранных данных с целью увеличения эффективности реконструкции дочерних частиц от Λ и Ω.
♦ Выделение Λ→рπ¯	Оптимизация выхода по критерию «значимость собственной длины распада».
▶ Реконструкция Ω ⁻ →Λ + K ⁻	Оптимизация выхода с помощью MVTA (ROOT, MultiVariate Techniques of Analysis)
🔶 Комбинирование Ј/ψ + Ω	Вначале оптимизируется фон, используя заведомо ложные комбинации J/ψ + (ΛK ⁺)
$ M = M_{J/\psi\Omega} - M_{J/\psi} - M_{\Omega} + M_{J/\psi}^{PDG} + M_{\Omega}^{P}$	Улучшение разрешения по массе с 80 MeVDGдо 34 MeV(event-by-event correction)
Фиксирование критериев отбо и применение их к J/ψ + Ω ⁻	ра Выделение сигнала, контроль возможных вкладов в него от фоновых событий

Реконструкция Ω^{-}

Минимальный набор критериев:

- Восстановление общей вершины треков Λ и Ккандидата; λ – расстояние до первичной вершины, измеренное в поперечной плоскости детектора
- Значимость предполагаемой длины распада λ/σ_λ > 4
- Ошибка длины распада σ_λ< 0.5 см

16.02.2009

ОИЯИ, Вертоградов Л.С.

Реконструкция Ω^{-} (2)

Чтобы подавить комбинаторный фон, применялся многовариантный анализ (программа MVTA из пакета ROOT, CERN). Одновременно использовалось до 20 входных переменных (BDT, Boosted Decision Trees analysis mode):

- описывающих кинематику продуктов распада Λ and Ω ;
- характеризующих вершины Λ и Ω, а также их длины распада;
- но ничего, касающегося Ј/ψ Ω комбинации

Тренировка и оптимизация:

- в качестве «сигнала»: Ω⁻→ΛK⁻
 МС события (моделирование Ω_b);
- в качестве «фона»: выборка *J*/ψΛK⁺ (т.е., ложная зарядовая комбинация треков).

Наиболее значимыми переменными оказались:

- Рт каона;
- Рт протона;
- Рт пиона;
- длина распада Ω. 16.02.2009

Реконструкция $\Omega^{-}(3)$ after BDT selection

Результат

Macca: M = 6.165 ± 0.010(stat) ± 0.013(syst) GeV; ΔM=34 MeV

Значимость сигнала= 5.4 о

Проверка наблюдения (1). Состоятельность промежуточных резонансов

Проверка наблюдения (2). Время жизни Ω_b

Конечно, статистики недостаточно для измерения этого параметра. Здесь демонстрируется лишь согласие между экспериментальными и МС данными, генерированными для $\tau(\Omega_b) = 1.54 \text{ ps}.$

16.02.2009

Run 203929, Event 22881065, $M(\Omega_b) = 6.158$ GeV

Дополнительные слайды

16.02.2009

Оптимизация сигнала Λ°

Критерий λ/σ_λ > 10 наилучшим образом увеличивает значимость сигнала

$\Xi^- \rightarrow \Lambda \pi^-$ вклад в Ω^-

- Эти гистограммы показывают вклад тех случаев, в которых пионы были ошибочно названы каонами.
- Этот фон эффективно отбрасывается дополнительным критерием M(Λπ) > 1.34.

Оценка систематической ошибки массы Ω_b

- Варьирование «фитирующих» функций
 - Линейная ф-ция фона вместо постоянной; незначительный вклад.
 - Стандартное отклонение гаусовой ф-ции в пределах 28 – 40 МэВ; → 3 МэВ/с².
- Возможная коррекция шкалы импульсов:
 - Путём «фитирования» имеющегося в данных массового пика Λ_b; → 4 МэВ/с².
- Выборка событий:
 - Варьирование критериев отбора, сравнение двух вариантов анализа Ω -сигнала (cut-based and BDT analysis); $\rightarrow 12 \text{ M}_{\Im}\text{B/c}^2$.

Mass measurement

• Fit:

- Unbinned extended log-likelihood fit
- Gaussian signal, flat background
- Number of background/signal events are floating parameters

Сравнение измеренной массы с оценкаими теор.моделей

Оценка величины относительного выхода (1)

В дополнение мы также измеряем относительный выход Ω_b:

$$\frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi\Omega^-)}{f(b \to \Xi_b^-)Br(\Omega_b^- \to J/\psi\Xi^-)} = \frac{\mathcal{E}(\Xi_b^-)}{\mathcal{E}(\Omega_b^-)}\frac{N(\Omega_b^-)}{N(\Xi_b^-)}$$

 $\frac{\mathcal{E}(\Omega_b^-)}{\mathcal{E}(\Xi_b^-)} = 1.6 \pm 0.2$ (по данным МонтеКарло моделирования)

$$\frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi\Omega^-)}{f(b \to \Xi_b^-)Br(\Omega_b^- \to J/\psi\Xi^-)} = 0.72 \pm 0.29(stat) + ^{+0.14}_{-0.21}(syst)$$

Систематическая ошибка включает в себя вклады от неопределённости значений как самого сигнала, так и эффективности критериев отбора событий. 16.02.2009 ОИЯИ, Вертоградов Л.С. 26

Оценка величины относительного выхода (2) From Phys. Rev. D 56, 2799 (1997): $\frac{\Gamma(\Omega_b^- \to J/\psi\Omega^-)}{\Gamma(\Xi_b^- \to J/\psi\Xi^-)} = 9.8$ THEORY

then

$$\frac{Br(\Omega_b^- \to J/\psi\Omega^-)}{Br(\Xi_b^- \to J/\psi\Xi^-)} = \frac{\tau(\Omega_b^-)}{\tau(\Xi_b^-)} \frac{\Gamma(\Omega_b^- \to J/\psi\Omega^-)}{\Gamma(\Xi_b^- \to J/\psi\Xi^-)} = 9.8 \frac{\tau(\Omega_b^-)}{\tau(\Xi_b^-)}$$

$$\frac{f(b \to \Omega_b^-)}{f(b \to \Xi_b^-)} = \frac{0.72}{9.8} \frac{\tau(\Xi_b^-)}{\tau(\Omega_b^-)} \qquad \frac{\tau(\Xi_b^-) = 1.42^{+0.28}_{-0.24} \text{ ps}}{0.83 < \tau(\Omega_b^-) < 1.67 \text{ ps}} \qquad \text{THEORY}$$

$$\frac{f(b \to \Omega_b^-)}{f(b \to \Xi_b^-)} = \begin{cases} 0.126 \ (\tau(\Omega_b^-) = 0.83 \, \text{ps}) \\ 0.062 \ (\tau(\Omega_b^-) = 1.67 \, \text{ps}) \end{cases} \implies \frac{f(b \to \Omega_b^-)}{f(b \to \Xi_b^-)} \approx 0.06 - 0.13$$

16.02.2009

D0 2007 результат: наблюдение Ξ_b^-

Number of events: 15.2 ± 4.4 Mass: 5.774 ± 0.011 (stat) GeV Width: 0.037 ± 0.008 GeV

We also measured:

$$R = \frac{\sigma \left(\Xi_{b}^{-}\right) BR \left(\Xi_{b}^{-} \rightarrow J / \psi \Xi^{-}\right)}{\sigma \left(\Lambda_{b}\right) BR \left(\Lambda_{b} \rightarrow J / \psi \Lambda\right)}$$

$$R = 0.28 \pm 0.09$$
 (stat) + $^{+0.09}_{-0.08}$ (syst)

$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)} = 5.5\sigma$$

PRL 99, 052001 (2007)

16.02.2009