Baryon spectroscopy and new resonances in meson photoproduction experiments

A.V. Anisovich, A.V. Sarantsev

Petersburg Nuclear Physics Institute

Constituent Confinement-

The Δ^* - states

⇔ Additional experimental information needed !!

Problems in the baryon spectroscopy and/or quark model:

- 1. Problem: The number of predicted three quark states exceeds dramatically the number of discovered baryons.
- Possible solution: Most of the information comes from the analysis of meson induced reactions and meson-baryon final states. Photoproduction data taken by CLAS, GRAAL, LEPS and CB-ELSA can provide an important information about missing states.
 - (a) problem: The unambiguous analysis of photoproduction reactions can not be done without polarization information available.
 - (b) problem: Signals in simple reactions are expected to be mostly weak. Strong signals from new resonances can be found in multi-meson final states.
 - (c) Possible solution 1: The single polarization observables are measured now by almost all collaborations. In the nearest future single and double polarization data will be available from CLAS and CB-ELSA.
 - (d) **Possible solution 2:** A combined analysis of the large data sets.

For combined analysis of all available data a new approach is needed:

- 1. Fully relativistically invariant.
- 2. Convenient for combined analysis of single and multi-meson photoproduction.
- 3. Energy dependent, which allow us to apply directly the unitarity and analyticity conditions.
- 4. Convenient for calculation of the triangle and box diagrams or projection of the t and u-channel exchange amplitudes to the partial waves in s-channel.
- A. Anisovich, E. Klempt, A. Sarantsev and U. Thoma, Eur. Phys. J. A 24, 111 (2005)
- A. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A 30 (2006) 427
- A. V. Anisovich, V. V. Anisovich, E. Klempt, V. A. Nikonov and A. V. Sarantsev, Eur. Phys. J. A 34 (2007) 129.

Observable	$N_{\rm data}$	w_i	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	w_i	$\frac{\chi^2}{N_{\rm data}}$	
$\sigma(\gamma \mathrm{p} \!\rightarrow\! \mathrm{p} \pi^0)$	1106	7	0.99	CB-ELSA	$\sigma(\gamma p \!\rightarrow\! p \pi^0)$	861	3	3.22	GRAAL
$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0)$	469	2.3	3.75	GRAAL	$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \pi^0)$	593	2.3	2.13	SAID
${ m P}(\gamma { m p} \! ightarrow { m p} \pi^0)$	594	3	2.58	SAID	$T(\gamma p \rightarrow p \pi^0)$	380	3	3.85	SAID
$\sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{n} \pi^+)$	1583	2.8	1.07	SAID					
$\sigma(\gamma \mathbf{p} \!\rightarrow\! \mathbf{p} \eta)$	667	30	0.84	CB-ELSA	$\sigma(\gamma \mathbf{p} \!\rightarrow\! \mathbf{p} \eta)$	100	7	1.69	TAPS
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \eta)$	51	10	1.82	GRAAL 98	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p} \eta)$	100	10	2.11	GRAAL 04
$C_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	5	1.71	CLAS	$C_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$) 160	7	1.95	CLAS
$\sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	1377	5	2.02	CLAS	$\sigma(\gamma \mathbf{p} \rightarrow \Lambda \mathbf{K}^+)$	720	1	1.53	SAPHIR
$P(\gamma p \rightarrow \Lambda K^+)$	202	6.5	1.65	CLAS	$P(\gamma p \rightarrow \Lambda K^+)$	66	3	2.89	GRAAL
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \Lambda \mathrm{K}^+)$	66	5	2.19	GRAAL	$\Sigma(\gamma p \rightarrow \Lambda K^+)$	45	10	1.98	LEP
$C_x(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$) 94	5	2.70	CLAS	$C_z(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^{+})$	[⊢]) 94	5	2.77	CLAS
$\sigma(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	1280	3	2.10	CLAS	$\sigma(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	660	1	1.33	SAPHIR
$P(\gamma p \rightarrow \Sigma^0 K^+)$	95	6	1.58	CLAS	$\Sigma(\gamma \mathrm{p} \rightarrow \Sigma^0 \mathrm{K}^+)$) 42	5	1.04	GRAAL
$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	45	10	0.62	LEP	$\int \sigma(\gamma \mathbf{p} \rightarrow \Sigma^+ \mathbf{K}^0)$	48	2.3	3.51	CLAS
$\sigma(\gamma p \!\rightarrow\! \Sigma^+ K^0)$	120	5	0.98	SAPHIR	$\sigma(\gamma \mathrm{p} \rightarrow \Sigma^+ \mathrm{K}^0)$	72	5	1.17	CB-ELSA

The fitted reactions with two particle final states.

Three particle final states reactions fitted with maximum likelihood method.

Observable	
$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0}$)	CB-ELSA (1.4 GeV)
$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0}$)	TAPS
$\sigma(\gamma\mathrm{p}{ m m o}\mathrm{p}\pi^{0}\eta)$	CB-ELSA (3.2 GeV)
${ m E}(\gamma { m p}{ m m o}{ m p}\pi^0\pi^0$)	ΜΑΜΙ
$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0}$)	GRAAL
$\sigma(\pi^-\mathrm{p}\! ightarrow\!\mathrm{n}\pi^0\pi^0)$	CRYSTAL BALL

$$\gamma p
ightarrow \pi^0 p$$
 from Crystal Barrel at ELSA ($E_\gamma \leq 3.2$ GeV)

 $\Delta(1232)P_{33}$ $N(1520)D_{13} S_{11}$ $N(1680)F_{15}$ $\Delta(1700)D_{33}$ $\Delta(1920)P_{33}$

Non-resonance contributi-

on:

t-channel $\rho-\omega$ exchange, u-exchange and non-resonance production in $J^P=3/2^+ \ {\rm wave}$

$\gamma p \rightarrow \pi^0 p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV) $\Delta(1232) P_{33}, S_{11}, N(1520) D_{13}, N(1680) F_{15}$

$\gamma p ightarrow \pi^0 p$ from Crystal Barrel at ELSA ($E_\gamma \leq 3.2~{ m GeV}$)

Beam asymmetry $\Sigma(\gamma p \to \pi^0 p)$ from GRAAL 04

T-matrix poles: $M = 1508^{+10}_{-30}$ MeV, $2\ Im = 165 \pm 15$ MeV; $M = 1645 \pm 15$ MeV, $2\ Im = 187 \pm 20$ MeV

T-matrix poles: $M = 1371 \pm 7$ MeV, $2 Im = 192 \pm 20$ MeV; $M = 1850 \pm 10$ MeV, $2 Im = 150 \pm 20$ MeV

$\pi^- p \rightarrow n \pi^0 \pi^0$ (Crystal Ball) total cross section

 $\gamma p \rightarrow p \pi^0 \pi^0$ (CB-ELSA) M.Fuchs et al.

PWA corrected cross section and contributions from $\Delta(1232)\pi$ (dashed) and $N\sigma$ (dashed-dotted) final states.

Contributions from D_{33} (dotted), P_{11} (dashed) and D_{13} (dashed-dotted) partial waves. Results for our PWA in comparison to $\sigma_{3/2}, \ \sigma_{1/2}$ $\vec{\gamma}\vec{p}
ightarrow p\pi^0\pi^0$ from Daphne at MAMI

Amplitudes adjusted to our unpolarised data only!:

	$S_{11}(1535)$	PDG	$S_{11}(1650)$	PDG	$D_{13}(1520)$	PDG
Mass	1508 $^{+10}_{-30}$	1495–1515	1645 \pm 15	1640–1680	1509±7	1505–1515
$\Gamma_{ m tot}$	165 \pm 15	90-150	187 \pm 20	150-170	113±12	110-120
M_{BW}	1548±15	1520-1555	1655±15	1640–1680	1520±10	1515–1530
Γ^{BW}_{tot}	170±20	100-200	180±20	145-190	125 \pm 15	110-135
$A_{1/2}$	86±25	90±30	95±25	53±16	7±15	-(24±9)
$A_{3/2}$					137 \pm 12	166±5
$\Gamma_{ m miss}$	-	< 4 %	-	4–12 %	13±5 <i>%</i>	15–25 %
$\Gamma_{\pi N}$	37±9%	35–55 %	70 \pm 15%	55–90 %	58±8%	50–60 %
$\Gamma_{\eta \mathrm{N}}$	40±10 <i>%</i>	30–55 %	15 \pm 6%	3–10 %	0.2 \pm 0.1 %	0.23±0.04 %
$ m N\sigma$	-	-	-	< 4 %	< 4 %	< 8 %
$\Gamma_{K\Lambda}$	-		5±5%	-	-	-
$\Gamma_{\mathrm{K}\Sigma}$	-		-		-	
$\Gamma_{\Delta\pi(L < J)}$	-		-		12±4 <i>%</i>	5-12 %
$\Gamma_{\Delta\pi(L>J)}$	23 ±8%	< 1 %	10±5 <i>%</i>	< 1 %	14±5 <i>%</i>	10-14 %
$\Gamma_{\mathrm{P}_{11}\pi}$	-		-		2±2%	

Properties of the low-lying baryons.

	D (1700)		D (107F)		D(1700)	
	$D_{13}(1700)$	PDG	$D_{15}(1075)$	PDG	$P_{13}(1720)$	PDG
Mass	1710 \pm 15	1630-1670	1639 \pm 10	1655–1665	1630 \pm 90	1660–1690
$\Gamma_{ m tot}$	155 \pm 25	50-150	180±20	125-155	460±80	115-275
M_{BW}	1740 \pm 20	1650-1750	1678±15	1670–1685	1790 \pm 100	1700–1750
Γ^{BW}_{tot}	180±30	50-150	220±25	140-180	690±100	150-300
$A_{1/2}$	20±16	-(18±13)	25±10	19±8	150±80	18±30
$A_{3/2}$	75±30	-(2±24)	44±12	-(15±9)	120±80	19±20
$\Gamma_{ m miss}$	20±15	< 35 %	20 ±8	1–3 %	-	70–85 %
$\Gamma_{\pi N}$	8±5%	5–15 %	30±8%	40–50 %	9±5%	10–20 %
$\Gamma_{\eta N}$	10±5 <i>%</i>	0±1 %	3±3%	0–1 %	10 \pm 7%	4±1 %
$\mathrm{N}\sigma$	18±12 <i>%</i>		10 \pm 5%		3±3%	
$\Gamma_{K\Lambda}$	1±1		3±2%		12±9	-
$\Gamma_{\mathrm{K}\Sigma}$	<1 %		<1 %		<1 %	
$\Gamma_{\Delta \pi (L < J)}$	10±5		24 ±8		38±20 %	
$\Gamma_{\Delta\pi(L>J)}$	20 \pm 11 %		< 3 %		6±6%	10-14 %
$\Gamma_{P_{11}\pi}$	14±8		<3%		_	
$\Gamma_{D_{13}}\pi$	_		4 ± 4		24±20 <i>%</i>	

Properties of the low-lying baryons.

Properties of th	e low-lying	baryons.

	$F_{15}(1680)$	PDG	$S_{31}(1620)$	PDG	$D_{33}(1700)$	PDG
Mass	1674±5	1665–1675	1615±25	1580–1620	1610±35	1620–1700
$\Gamma_{ m tot}$	95±10	1 05-135	180±35	100-130	320±60	150-250
	1684±8	1675–1690	1650±25	1615–1675	1770±40	1670–1770
Γ^{BW}_{tot}	105±8	120-140	250 ±60	120-180	630±150	200-400
$A_{1/2}$	-(12±8)	-(15±6)	130±50	27±11	125±30	104±15
$A_{3/2}$	120±15	133±12			150±60	85±22
$\Gamma_{ m miss}$	2±2%	3–15 %	10±7%	7–25 %	15±10 <i>%</i>	30–55 %
$\Gamma_{\pi \mathrm{N}}$	72 \pm 15 %	60–70 %	22±12 <i>%</i>	10–30 %	15 \pm 8 %	10–20 %
$\Gamma_{\eta N}$	< 1 %	0±1 %	-	-	-	-
$ m N\sigma$	11±5%	5–20%	-	-	-	-
$\Gamma_{K\Lambda}$	< 1%		-	-	-	-
$\Gamma_{\mathrm{K}\Sigma}$	< 1%					
$\Gamma_{\Delta \pi (L \lt J)}$	8±3%	6-14 %	48 ± 25	30-60%		
					70 \pm 20 %	30–60 %
$\Gamma_{\Delta\pi(L>J)}$	4 ± 3%	< 2 %				
$\Gamma_{\mathrm{P}_{11}\pi}$	-		19±12 %		<5%	
$\Gamma_{\mathrm{D}_{13}\pi}$	-		-		< 3 %	

Properties of $N(1440)P_{11}$. The left column lists mass, width, partial widths of the Breit-Wigner resonance; the right column pole position and squared couplings to the final state at the pole position.

М	=	$1436 \pm 15\mathrm{MeV}$	$M_{ m pole}$	=	$1371\pm7\mathrm{MeV}$
Γ	=	$335\pm40\mathrm{MeV}$	$\Gamma_{\rm pole}$	=	$192\pm20\mathrm{MeV}$
$\Gamma_{\pi N}$	=	$205\pm25\mathrm{MeV}$	$g_{\pi N}$	=	$(0.51 \pm 0.05) \cdot e^{-i\pi \frac{(35\pm 5)}{180}}$
$\Gamma_{\sigma N}$	=	$71\pm17{ m MeV}$	$g_{\sigma N}$	=	$(0.82 \pm 0.16) \cdot e^{-i\pi \frac{(20\pm 13)}{180}}$
$\Gamma_{\pi\Delta}$	=	$59\pm15{\rm MeV}$	$g_{\pi\Delta}$	=	$(-0.57 \pm 0.08) \cdot e^{i\pi \frac{(25\pm 20)}{180}}$
	T-r	matrix: $A_{1/2} = 0.05$	5 ± 0.020	GeV	$\phi = (70 \pm 30)^{\circ}$

$\gamma p \rightarrow \eta p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV)

Main resonance contribu-

tions: $N(1535)S_{11}$ $N(1650)S_{11}$ $N(1720)P_{13}$ new $N(2070)D_{15}$

Non-resonance contribution: reggezied t-channel $\rho - \omega$ exchange.

No evidence for third $N(1800)S_{11}$

$\gamma p \rightarrow \eta p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV)

Beam asymmetry $\Sigma(\gamma p \to \eta p)$ from GRAAL 04

The total cross section for $\gamma p \to \Lambda K^+$ for solution 1 (a) and solution 2 (b). The solid curves are the results of our fits, dashed lines are the P_{13} contribution, dotted lines are the S_{11} contribution and dash-dotted lines are the contribution from K^* exchange.

The total cross section for $\gamma p \to \Sigma K$ for solution 1 (a) and solution 2 (b). The solid curves are the results of our fits, dashed lines are the P_{13} contribution, dash-dotted lines are the P_{11} contribution and dotted lines are the contribution from K exchange.

 $\gamma p \rightarrow \Lambda K^+$ (left) and $\gamma p \rightarrow \Sigma K$ (right). Only energy points where C_x and C_z were measured are shown. The solution 1 (red solid line) and solution 2 (blue dashed line).

 C_x (black circle) and C_z (open circle) for $\gamma p \to \Lambda K^+$. The solid and dashed curves are results of our fit obtained with solution 1 (left) and solution 2 (right) for C_x and C_z .

	Solut	tion 1	Solu	ition 2
M_{pole}	1640 ± 80	1870 ± 15	1630 ± 60	1960 ± 15
Γ_{tot}^{pole}	480 ± 60	170 ± 30	440 ± 60	195 ± 25
M_{BW}	1800 ± 100	1885 ± 15	1780 ± 80	1975 ± 15
Γ^{BW}_{tot}	700 ± 100	180 ± 25	680 ± 80	200 ± 25
$A_{1/2}$	140 ± 80	$-(15 \pm 15)$	160 ± 40	$-(18 \pm 8)$
$arphi_{1/2}$	$-(10 \pm 15)^{\circ}$	-	$(10 \pm 15)^{\circ}$	$(40 \pm 15)^{\circ}$
$A_{3/2}$	150 ± 80	$-(40 \pm 15)$	70 ± 30	$-(35 \pm 12)$
$arphi_{3/2}$	$-(40 \pm 30)^{\circ}$	$-(20 \pm 15)^{\circ}$	$(0\pm 20)^{\circ}$	$-(40 \pm 15)^{\circ}$
$\mathrm{Br}_{N\pi}$	8 ± 4	5 ± 3	11 ± 4	6 ± 3
${ m Br}_{N\eta}$	13 ± 4	21 ± 8	5 ± 2	15 ± 3
$\operatorname{Br}_{\Delta\pi(P)}$	48 ± 10	3 ± 2	28 ± 6	7 ± 2
$\operatorname{Br}_{\Delta\pi(F)}$	2 ± 2	4 ± 3	11 ± 4	21 ± 5
$\mathrm{Br}_{K\Lambda}$	15 ± 6	10 ± 5	5 ± 2	12 ± 3
$\mathrm{Br}_{K\Sigma}$	< 1	20 ± 8	< 1	8 ± 2
$\mathrm{Br}_{D_{13}\pi}$	10 ± 6	8 ± 3	38 ± 6	5 ± 3
$\mathrm{Br}_{N\sigma}$	4 ± 2	30 ± 12	2 ± 2	26 ± 8

Properties of the two lowest P_{13} states for two solutions:

 $\sigma_{tot}(\gamma p \to K^0 \Sigma^+)$ from CB-ELSA

Red line – $P_{13}(1900)$ Blue line – $P_{11}(1860)$

Left panel : contributions from $\Delta(1232)\eta$ (dashed), $S_{11}(1535)\pi$ (dashed-dotted) and $Na_0(980)$ final states.

Right panel: D_{33} partial wave (dashed), P_{33} partial wave (dashed-dotted), $D_{33} \rightarrow \Delta(1232)\eta$ (dotted) and $D_{33} \rightarrow N a_0(980)$ (wide dotted).

 $D_{33}\text{-wave:}\ \pi N$, $\Delta(1232)\pi$ (S- and D-waves)), $\Delta(1232)\eta$, $S_{11}(1535)\pi$

Properties of the $\Delta(1920)P_{33}$ and $\Delta(1940)D_{33}$ resonances.

	M_{pole}	Γ_{pole}	M_{BW}	Γ^{BW}_{tot}
$\Delta(1920)P_{33}$	1980^{+25}_{-45}	350^{+35}_{-55}	$\frac{5}{5}$ 1990 ± 3	$5 375 \pm 50$
$\Delta(1940)D_{33}$	1985 ± 30	390 ± 5	50 1990 ± 4	$0 410 \pm 70$
	$\mathrm{Br}_{N\pi}$	$\mathrm{Br}_{\Delta\eta}$	$\operatorname{Br}_{N(1535)\pi}$	$\operatorname{Br}_{Na_0(980)}$
$\Delta(1920)P_{33}$	15 ± 8	18 ± 8	7 ± 4	4 ± 2
$\Delta(1940)D_{33}$	9 ± 4	5 ± 2	2 ± 1	2 ± 1

Parity doublets and chiral multiplets of N and Δ resonances of high mass

Glozman suggested a restoration of chiral symmetry in high-mass excitations. Parity doublets must not interact by pion emission or absorption and have a small coupling to πN .

$J = \frac{1}{2}$	$\mathbf{N}_{1/2^+}(2100)^a$ *	${\sf N}_{1/2^-}(2090)^a$ *	$\Delta_{1/2^+}(1910)$ ****	$\Delta_{1/2^-}(1900)^{a}$ **
$J = \frac{3}{2}$	${f N}_{3/2^+}(1900)^a$ **	${\sf N}_{3/2^-}(2080)^a$ **	$\Delta_{3/2^+}(1920)^{a}$ ***	$\Delta_{3/2^-}(1940)^a$ *
$J=\frac{5}{2}$	${\sf N}_{5/2^+}(2000)^a$ **	${\sf N}_{5/2^-}(2200)^a$ **	$\Delta_{5/2^+}(1905)$ ****	$\Delta_{5/2^-}(1930)^{a}$ ***
$J = \frac{7}{2}$	${\sf N}_{7/2^+}(1990)^a$ **	${\sf N}_{7/2^-}(2190)$ ****	$\Delta_{7/2^+}(1950)$ ****	$\Delta_{7/2^-}(2200)^a$ *
$J=\frac{9}{2}$	${f N}_{9/2^+}(2220)$ ****	${\sf N}_{9/2^-}(2250)$ ****	$\Delta_{9/2^+}(2300)$ **	$\Delta_{9/2^{-}}(2400)^{a}$ **

Problem: the absence of a near-by parity partner of $\Delta(1950)F_{37}$ and partners of $\Delta(2420)H_{3\,11}$ and $\Delta(2950)K_{3\,11}$. However these states can be still undetected.

Holographic QCD (AdS/QCD)

Soft-wall model prediction: $M_{N,L}^2 = 4\lambda^2 \left(N + L + \frac{3}{2}\right)$ 9/2+ 11/2 13/2 M^2 (GeV²) Δ_{15/2}+(2950) 5/2 9/2 $\Delta_{7/2}$ +(2390) $11/2^{-1}$ $\Delta_{0/2}^{+}$ +(2300) ∆_{11/2}+(2420) N=0 7/2 Δ_{5/2}⁻(2223) 5/2 ∆_{1/2}+(1910) 9/2 6 Δ_{7/2}-(2200) 7/2 ► ∆_{3/2}+(1920) 11/2 9/2 $\Delta_{13/2}^{-}$ (2750) ∆_{5/2}+(1905) 11/2 ∆_{7/2}+(1950) ∆_{1/2}⁻(1620) 1/2 Δ_{5/2}⁻(2350) 4 $3/2^{+}$ ∆_{3/2}-(1700) N=1 7/2 $\Delta_{5/2}$ +(2200) ∆_{9/2}[−](2400) Δ_{1/2}⁻(1900) 7/2 ∆_{3/2}+(1232) ∆_{3/2}⁻⁻(1940) **←** 2 ∆_{5/2}-(1930) $\Delta_{1/2}^{+}(1750)$ $\Delta_{3/2}^{,-}$ +(1600) L+N 0 2 3 5 0 4 $M_{N,L}^{2} = 4\lambda^{2} \left(N + L + \frac{3}{2} \right) - 2 \left(M_{\Delta}^{2} - M_{N}^{2} \right) \kappa_{gd}$

 κ_{gd} is the fraction of most attractive color-antitriplet isosinglet diquark. κ_{gd} =0 for Δ and N(S=3/2) states, $\frac{1}{2}$ for S = 1/2 ($70SU_6$) and $\frac{1}{4}$ for S = 1/2 ($56SU_6$). Hilmar Forkel and Eberhard Klempt, hep-ph:0810.2959v1

L, S, N	κ_{gd}		I	Resonance			Pred.
$0,rac{1}{2}$, 0	$\frac{1}{2}$	N(940)				input:	0.94
0, $rac{3}{2}$,0	0	$\Delta(1232)$					1.27
0, $rac{1}{2}$,1	$\frac{1}{2}$	N(1440)					1.40
1, $rac{1}{2}$,0	$\frac{1}{4}$	N(1535)	N(1520)				1.53
1, $rac{3}{2}$,0	0	N(1650)	N(1700)	N(1675)			1.64
1, $rac{1}{2}$,0	0	$\Delta(1620)$	$\Delta(1700)$		L,S,N =0, $rac{3}{2}$,1:	$\Delta(1600)$	1.64
2, $rac{1}{2}$,0	$\frac{1}{2}$	N(1720)	N(1680)		L,S,N =0, $rac{1}{2}$,2:	N(1710)	1.72
1, $\frac{3}{2}$,1	0	$\Delta(1900)$	$\Delta(1940)$	$\Delta(1930)$			1.92
2, $rac{3}{2}$,0	0	$\Delta(1910)$	$\Delta(1920)$	$\Delta(1905)$	$\Delta(1950)$		1.92
2, $rac{3}{2}$,0	0	N(1880)	N(1900)	N(1990)	N(2000)		1.92
0, $rac{1}{2}$,3	$\frac{1}{2}$	N(2100)					2.03
3, $rac{1}{2}$,0	$\frac{1}{4}$	N(2070)	N(2190)	L,S,N =1, $rac{1}{2}$,2:	N(2080)	N(2090)	2.12
3, $rac{3}{2}$,0	0	N(2200)	N(2250)	L,S,N =1, $rac{1}{2}$,2:	$\Delta(2223)$	$\Delta(2200)$	2.20
4, $rac{1}{2}$,0	$\frac{1}{2}$	N(2220)					2.27
4, $rac{3}{2}$,0	0	$\Delta(2390)$	$\Delta(2300)$	$\Delta(2420)$	L,N=3,1:	$\Delta(2400)$	2.43
5, $rac{1}{2}$,0	$\frac{1}{4}$	N(2600)				$\Delta(2350)$	2.57

Three different class of solutions are found:

- 1. solutions with strong interference in S_{11} wave;
- 2. solutions with $N(1710)P_{11}$ resonance;
- 3. solutions with narrow state in the mass region 1665 MeV.

Observable $N_{\rm data}$	$rac{\chi^2}{N_{ m data}}$	$\frac{\chi^2}{N_{\rm data}}$	$rac{\chi^2}{N_{ m data}}$	Ref.
	Sol. 1	Sol. 2	Sol. 3	
$\sigma(\gamma { m n} ightarrow { m n} \eta)$ 280	1.32	1.37	1.31	CB-ELSA
$\Sigma(\gamma \mathrm{n} ightarrow \mathrm{n} \eta)$ 88	1.75	2.07	1.79	GRAAL
$\sigma(\gamma { m n} ightarrow { m n} \pi^0)$ 147	2.01	2.48	2.03	SAID database
$\Sigma(\gamma n ightarrow n \pi^0)$ 28	1.02	0.95	0.90	GRAAL

The total and differential cross section for the reaction $\gamma n \rightarrow \eta n$ obtained on the deuteron target. The PWA result from the solution with S_{11} interference (solution 1) is shown. The green curves show the corresponding cross sections on the free neutron target (no Fermi motion). Contributions: S_{11} (dashed), P_{13} (dotted) and P_{11} (dash-dotted)

The total and differential cross section for the reaction $\gamma n \rightarrow \eta n$ obtained on the deuteron target. The PWA result from the solution with narrow P_{11} resonance (solution 3) is shown. The green curves show the corresponding cross sections on the free neutron target (no Fermi motion). Contributions: S_{11} (dashed), P_{13} (dotted) and P_{11} (dash-dotted)

Beam asymmetry for the $\gamma p \to \eta p$ with fine bins

Solution 1: $\chi^2 = 1.35$

Solution 3: $\chi^2 = 0.95$

The long-standing discrepancies between the photo-production amplitude $A_{1/2}^n$ for $N(1535)S_{11}$ production ($A_{1/2}^n = -0.020 \pm 0.035 \,\text{GeV}^{-1/2}$ from $\gamma n \to n\pi^0$ (Arndt); $A_{1/2}^n = -0.100 \pm 0.030 \,\text{GeV}^{-1/2}$ from $\gamma n \to n\eta$ (Krusche) is solved.

	$S_{11}(1535)$	$S_{11}(1650)$
Pole position (mass)	1.505 ± 0.020	1.640 ± 0.015
(width)	0.145 ± 0.025	0.165 ± 0.015
PDG	1.510 ± 0.020	1.655 ± 0.015
	0.170 ± 0.080	0.165 ± 0.015
$A^p_{1/2}$ (GeV $^{-1/2})$	0.090 ± 0.025	0.100 ± 0.035
PDG	0.090 ± 0.030	0.053 ± 0.016
phase	$(20 \pm 15)^{\circ}$	$(25\pm20)^{\circ}$
$A_{1/2}^n$ (GeV $^{-1/2})$	-0.080 ± 0.020	-0.055 ± 0.020
PDG	-0.046 ± 0.027	-0.015 ± 0.021
phase	$(20\pm20)^{\circ}$	$(30\pm25)^{\circ}$

Summary

- 1. An approach for the combined analysis of the pion and photo induced reaction with two and multi particle final states is developed.
- 2. The combined analysis of more them 45 different reactions helped to identify the properties of known baryons.
- 3. The analysis of the data on hyperon photoproduction reveal two new baryon states in the region of 1900 MeV, $P_{11}(1880)$ and $P_{13}(1900)$.
- 4. The η -photoproduction data reveal the baryon resonance $D_{15}(2070)$.
- 5. The $D_{33}(1940)$ state is needed for the description of the $\gamma p \rightarrow \pi^0 \eta p$ data.
- 6. The structure at 1670 MeV observed in the η photoproduction data off neutron can be explained either by the interference within S_{11} wave or by a contribution of a narrow P_{11} state with mass 1670 ± 6 MeV. No other mechanism can explain this reaction.
- 7. The spectrum of observed states is in direct contradiction with a classical quark model. The best explanations are chiral symmetry restoration or AdS/QCD soft-wall

model.