Измерение асимметрий Коллинза и Сиверса в эксперименте ГЕРМЕС

В.А.Коротков (ИФВЭ) (сотрудничество ГЕРМЕС)

Сессия-конференция секции ядерной физики ОФН РАН Протвино, 24 декабря, 2008

План

- Эксперимент ГЕРМЕС
- Мотивация измерений
- Азимутальные асимметрии в поуинклюзивном электророждении адронов
- Результаты
 - Измерение амплитуд асимметрии
 - Амплитуды Коллинза
 - Амплитуды Сиверса
 - Амплитуды в плоскости двух переменных
- Заключения

- e/h rejection: TRD, Preshower, Calorimeter, RICH
- \bullet magnetic spectrometer: $\Delta p/p < 2.5\%$ and $\Delta \theta < 0.6$ mrad

Эксперимент ГЕРМЕС

2002 - 2005 data taking years:

- transversely polarized atomic hydrogen ($P \sim 75\%$);
- flip of the polarisation direction every 90 sec in 0.5 sec;
- integrated luminosity about 170 pb^{-1}

Motivation: Transversity Distribution Function

Leading Twist: three quark distribution functions.

Unpolarized DF Helicity DF Transversity DF $q(x) = \overrightarrow{q}(x) + \overleftarrow{q}(x) \Delta q(x) = \overrightarrow{q}(x) - \overleftarrow{q}(x) \delta q(x) = q^{\uparrow}(x) - q^{\downarrow}(x)$ well known unknown

- for non-relativistic quarks: $\delta q(x) = \Delta q(x)$.
- no gluon transversity for spin-1/2 nucleon
- ► $\delta q(x)$ doesn't contribute to inclusive DIS, $ep \rightarrow eX$, due to its chiral-odd nature.
- requires a combination with other chiral-odd object, e.g. Collins FF ⇒ study of transverse target-spin asymmetries (TTSA) in SIDIS, ep → ehX.

TTSA in SIDIS

- ► Collins FF H_1^{\perp} describes an influence of the quark transverse polarization on the hadron transverse momentum $\vec{P}_{h\perp}$.
- Sivers DF f_{1T}^{\perp} describes a correlation of struck quark p_T with target polarization.

$$A_{UT}^{h}(\phi,\phi_{S}) = \frac{1}{|S_{T}|} \frac{N_{h}^{\dagger}(\phi,\phi_{S}) - N_{h}^{\downarrow}(\phi,\phi_{S})}{N_{h}^{\dagger}(\phi,\phi_{S}) + N_{h}^{\downarrow}(\phi,\phi_{S})}$$

 $\begin{array}{ll} A^h_{UT} \propto \sin(\phi + \phi_S) \sum_q e_q^2 \cdot \mathcal{I}[h^q_{1T}(x, P_T^2) \cdot H_1^{\perp q}(z, k_T^2)] & - \text{``Collins''} \\ A^h_{UT} \propto \sin(\phi - \phi_S) \sum_q e_q^2 \cdot \mathcal{I}[f_{1T}^{\perp q}(x, P_T^2) \cdot D_1^q(z, k_T^2)] & - \text{``Sivers''} \end{array}$

 $\mathcal{I}[\dots]$ - convolution integral over initial (P_T^2) and final (k_T^2) quark transverse momenta.

SIDIS Kinematics

 $\boldsymbol{e}(k) + \boldsymbol{P}(P) \longrightarrow \boldsymbol{e}'(k') + \boldsymbol{h}(P_h) + \boldsymbol{X}(P_X)$

$$\begin{aligned} Q^2 &= -q^2 = -(k - k')^2, \ x_B = \frac{Q^2}{2P \cdot q}, \ y = \frac{P \cdot q}{P \cdot k}, \ W^2 = (P + q)^2, \ z = \frac{P \cdot P_h}{P \cdot q} \\ W^2 &> 10 \text{ GeV}^2, \quad 0.1 < y < 0.85, \quad Q^2 > 1 \text{ GeV}^2, \quad 0.2 < z < 0.7 \\ &< Q^2 >= 2.4 \text{ GeV}^2, \ < x >= 0.09, \ < y >= 0.54, \ < z >= 0.36, \\ P_{h\perp} &= 0.41 \text{ GeV}^2 \end{aligned}$$

Extraction of TTSA Amplitudes

- Unbinned maximum likelihood (ML) fits are used to extract simultaneously the Collins and Sivers amplitudes.
- Probability density function is defined as:

$$F(2 < \sin(\phi + \phi_{S}) >_{UT}^{h}, 2 < \sin(\phi - \phi_{S}) >_{UT}^{h}, ..., P, \phi, \phi_{S}) = \frac{1}{2} \left(1 + P \cdot \left(2 < \sin(\phi + \phi_{S}) >_{UT}^{h} \cdot \sin(\phi + \phi_{S}) + 2 < \sin(\phi - \phi_{S}) >_{UT}^{h} \cdot \sin(\phi - \phi_{S}) + 2 < \sin(3\phi - \phi_{S}) >_{UT}^{h} \cdot \sin(3\phi - \phi_{S}) + 2 < \sin(2\phi - \phi_{S}) >_{UT}^{h} \cdot \sin(2\phi - \phi_{S}) + 2 < \sin(2\phi - \phi_{S}) >_{UT}^{h} \cdot \sin(2\phi - \phi_{S}) + 2 < \sin(\phi_{S}) >_{UT}^{h} \cdot \sin(\phi_{S}) \right) \right)$$

• The logarithm of the likelihood function $\mathcal{L} = \prod_i F_i^{w_i}$ is maximized wrt the TTSA amplitudes.

Collins amplitudes for charged pions

- all data (02 05) are used (PRL, 94 (2005) 012002)
- \bullet positive amplitudes for π^+
- \bullet negative amplitudes for π^-
- large negative amplitudes for π^- were unexpected

•
$$H_1^{\perp,unf}(z) \approx -H_1^{\perp,fav}(z)$$

•
$$H_1^{fav} = H_1^{u \to \pi^+} = H_1^{d \to \pi^-} = H_1^{\overline{u} \to \pi^-} = H_1^{\overline{d} \to \pi^+}$$

• $H_1^{unf} = H_1^{u \to \pi^-} = H_1^{d \to \pi^+} = H_1^{\overline{u} \to \pi^+} = H_1^{\overline{d} \to \pi^-}$

Collins amplitudes for charged pions

Efremov, Goeke, Schweitzer (Phys.Rev.D73,094025,2006) Preliminary HERMES data 2002 - 2004.

$$\langle 2B_{\text{Gauss}}H_1^{\perp(1/2)\text{fav}}
angle = (3.5 \pm 0.8)\%$$

 $\langle 2B_{\text{Gauss}}H_1^{\perp(1/2)\text{unf}}
angle = -(3.8 \pm 0.7)\%$

Collins amplitudes for charged kaons

- K^+ amplitudes are consistent with π^+
- K^- may have the opposite sign from π^-

Sivers amplitudes for charged pions

- significantly positive for π^+
- a signiture of non-zero quark orbital angular momentum
- π^- amplitudes consistent with zero

Sivers Valence Quark Distributions

Sivers amplitudes for charged kaons

- significantly positive for K^+
- K^- amplitudes consistent with zero
- K^+ amplitude is 2.3 \pm 0.3 times larger than for π^+

- $K^- = s \bar{u}, \ \pi^- = d \bar{u}$ same antiquark
- $K^+ = u\bar{s}, \ \pi^+ = u\bar{d}$ different antiquarks
- May suggest significant antiquark Sivers functions and strongly flavor-dependent.

Amplitudes for neutral pions

Using charge conjugation and isospin symmetry of the Collins FF π^+ , π^- , and π^0 amplitudes can be related:

$$< \sin(\phi \pm \phi_S) >_{UT}^{\pi^+} + C \cdot < \sin(\phi \pm \phi_S) >_{UT}^{\pi^-} + (1 - C) \cdot < \sin(\phi \pm \phi_S) >_{UT}^{\pi^0} = 0$$

Here, $C = \sigma_{UU}^{\pi^+} / \sigma_{UU}^{\pi^-}$

Hermes results for the extracted TTSA amplitudes fulfill the isospin symmetry relation.

2-Dimensional Binning

- high statistics of pion data allows
 2-dimensional binning
- \bullet amplitudes still non-zero at higher Q^2
- additional combination of variables available, e.g. for fitting models

Заключения

- Фрагментационная функция Коллинза существенно отлична от нуля. Амплитуда асимметрии Коллинза для π^- имеет противоположный знак по отношению к амплитуде для π^+ . Объяснение: $H_1^{\perp,unf}(z) \approx -H_1^{\perp,fav}(z)$
- ГЕРМЕС впервые показал что функция распределения Сиверса отлична от нуля.

• Амплитуда Сиверса для K^+ больше амплитуды для π^+ фактором 2.3 \pm 0.3. Существенную роль играют морские кварки?

• Амплитуды Коллинза и Сиверса измерены в плоскости двух переменных: (x - z), ($x - P_{h\perp}$), ($z - P_{h\perp}$).