# Измерение массы и полной ширины $\psi$ (3770)- мезона

КЕДР/ВЭПП-4М

#### Цель эксперимента

Определение параметров  $\psi(3770)$  – мезона

Метод определения параметров резонанса

- Определение сечения в точках по энергии
- Измерение энергии пучка методом резонансной деполяризации
- Получение параметров резонанса из подгонки наблюдаемого сечения

#### Ускорительный комплекс ВЭПП-4М



- Измерение энергии методом резонансной деполяризации: Точность однократного измерения  $\simeq 1\times 10^{-6}$  Точность интерполяции между калибровками (5  $\div$  15)  $\times 10^{-6}$
- Метод комптоновского рассеяния (2005): Статистическая точность  $\simeq 5\times 10^{-5}$  / 30 минут Систематическая точность  $\simeq 3\times 10^{-5}$

## Детектор КЕДР



- Вакуумная камера
- Вершинный детектор
- Дрейфовая камера
- Аэрогелевые черенковские счетчики
- Времяпролетная система
- Жидкокриптоновый калориметр
- 🔮 Сверхпроводящая катушка
- Ярмо магнита
- Мюонная система
- Порцевой CSI калориметр
- О Компенсирующие катушки
- 🕑 Квадрупольные линзы

Сканирование  $\psi$ (3770) 2006 года



Основные источники ошибок: форма резонанса, нестабильность работы систем детектора.

Форма сечения при подгонке такая же, как в экспериментах MARKI,MARK2,DELCO,BES(2005)

### Сканирование $\psi$ (3770) 2004 года



$$egin{aligned} M_{\psi(3770)} &= 3773.5 \pm 0.9 \pm 0.6 \ {
m M}$$
ə B $\Gamma_{\psi(3770)} &= 29.0 \pm 6.7 \pm 3.0 \ {
m M}$ ə B



# Предварительные результаты измерения массы и полной ширины $\psi(3770)$

|          | $M_{\psi(3770)}$ [МэВ]   | Г <sub>ψ(3770)</sub> <b>[МэВ]</b> |
|----------|--------------------------|-----------------------------------|
| 2004 год | $3773.5 \pm 0.9 \pm 0.6$ | $29.0\pm6.7\pm3.0$                |
| 2006 год | $3772.5 \pm 0.6 \pm 0.6$ | $21.8\pm1.1\pm1.6$                |
|          | $3772.8 \pm 0.5 \pm 0.6$ | $22.0\pm1.1\pm1.6$                |







# Возможность интерференции с нерезонансным сечением рождения $D\bar{D}$



| Эксперимент             | <i>М</i> <sub>ψ(3770)</sub> [МэВ] | Г <sub>ψ(3770)</sub> [МэВ] |
|-------------------------|-----------------------------------|----------------------------|
| MARK-I                  | $3774.1\pm3$                      | $28\pm5$                   |
| DELCO                   | $3772.1\pm2$                      | $24\pm5$                   |
| MARK-II                 | $3766.1\pm2$                      | $24\pm5$                   |
| BES-II 2007             | -                                 | $28.5\pm1.2\pm0.2$         |
| BES-II 2008             | $3772.0\pm1.9$                    | $30.4\pm8.5$               |
| BELLE 2004              | $3778.4 \pm 3.0 \pm 1.3$          | -                          |
| BABAR 2007              | $3778.8 \pm 1.9 \pm 0.9$          | $23.5\pm3.7\pm0.9$         |
| BELLE 2008              | $3776.0 \pm 5.0 \pm 4.0$          | $27\pm10\pm5$              |
| BABAR 2008              | $3775.5 \pm 2.4 \pm 0.5$          | -                          |
| PDG2008 FIT             | $3772.92 \pm 0.35$                | $27.3\pm1.0$               |
| PDG2008 AVERAGE         | $3775.2\pm1.7$                    | $27.6\pm1.0$               |
| KEDR (предварительно!)  | $3772.8 \pm 0.5 \pm 0.6$          | $22.0\pm1.1\pm1.6$         |
| KEDR (с интерференцией) | $3777.0 \pm 1.9 \pm 0.7$          | $29.7\pm 4.7\pm 1.5$       |

#### Заключение

• Получены предварительные результаты измерений массы и полной ширины  $\psi(3770)$  при традиционной форме сечения. Также получен предварительный результат измерения массы  $\psi(2S)$ :

| <i>М</i> <sub>ψ(2S)</sub> <b>[МэВ]</b> | <i>М</i> <sub>ψ(3770)</sub> <b>[МэВ]</b> | Г <sub>ψ(3770)</sub> [МэВ] |
|----------------------------------------|------------------------------------------|----------------------------|
| $3686.122 \pm 0.008 \pm 0.012$         | $3772.8 \pm 0.5 \pm 0.6$                 | $22.0\pm1.1\pm1.6$         |

• При учёте интерференции с нерезонансным сечением рождения *DD* результаты значительно изменяются:

| <i>М</i> <sub>ψ(3770)</sub> <b>[МэВ]</b> | Г <sub>ψ(3770)</sub> [МэВ] |
|------------------------------------------|----------------------------|
| $3777.0 \pm 1.9 \pm 0.7$                 | $29.7\pm4.7\pm1.5$         |

- Обработка данных продолжается.
- Планируем набрать дополнительную статистику для подтверждения, либо опровержения гипотезы об интерференции

### Подгонки до 3920 и 3960 МэВ



### Подгонки до 3920 и 3840 МэВ



## Форма резонанса $\psi(3770)$

$$\sigma(W) = \frac{3\pi}{M^2} \int dW' \, dx \, \frac{\Gamma_{ee} \Gamma_h}{(W'(1-x)-M)^2 + \Gamma(W')^2/4} \mathscr{F}(x, W')$$
$$\Gamma(W) = \Gamma \, \frac{\frac{(R_0 * p_{D_n}(W))^3}{1 + (R_0 * p_{D_n}(W))^2} + \frac{(R_0 * p_{D_c}(W))^3}{1 + (R_0 * p_{D_c}(M))^2}}{\frac{(R_0 * p_{D_n}(M))^3}{1 + (R_0 * p_{D_n}(M))^2} + \frac{(R_0 * p_{D_c}(M))^3}{1 + (R_0 * p_{D_c}(M))^2}}$$

*F*(x, W) – радиационные поправки
 *E.A.Кураев, В.С.Фадин Ядерная Физика 41(466-472)1985*

Параметры подгонки

- видимое сечение подложки
- эффективность при  $\Gamma_{ee}^{\psi(3770)}$
- $\psi$ (3770) масса
- Г полная ширина
- σ<sub>W</sub> при ψ(2S)

- ψ(25) масса
- эффективность  $\Gamma_{ee}^{\psi(2S)}$
- сечение  $D\bar{D}$  нерезонансное
- R<sub>0</sub> радиус взаимодействия

$$\sigma_{cont} = (\sigma^0 + \sigma^{\pm})$$
$$\sigma_{cont}^{0,\pm} = \sigma_{D\bar{D}} \cdot \beta_{0,\pm}^3 \cdot \left(\frac{2 * M_{D^{0,\pm}}}{W}\right)^2$$

$$F_{Res}(W) = \frac{1}{\sqrt{2\pi}\sigma_{W}} \int_{-\infty}^{+\infty} \sigma(W') e^{-\frac{(W'-W)^{2}}{2\sigma_{W}^{2}}} dW'$$

$$F_{\psi(3770)}(W) = \varepsilon \cdot (F_{\mathsf{Res}}(W) + F_{\mathsf{NonRes}}(W)) + \varepsilon_{\psi(2S)} \cdot F^{\psi(2S)}(W) + p_{\mathsf{bg}} * \left(\frac{M_{\psi(2S)}}{W}\right)^2$$

### Пример события



- суммарная энергия в калориметрах > 400 МэВ либо энергия в LKR >200 МэВ
- требования на отбраковку космики MU + TOF

- плохие каналы ВД
- плохие каналы LKR
- плохие каналы CSI
- плохие триггерные каналы LKR

- NClustersLKR+NClusterCSI >= 5
- число треков из вершины в XY плоскости >= 3
- треков из вершины больше либо >=1
- эффективность по моделированию для 0.545

VD4\*DC11\*DC22\*SC2\*CSI+ VD4\*DC12\*DC21\*SC2\*CSI

VD4\*DC11\*CSI\*SB11\*SC1F+ VD4\*DC21\*CSI\*SB11\*SC1F+

VD4\*DC12\*DC21\*SB11\*SC2+ VD4\*DC11\*DC22\*SB11\*SC2+

ST=VD5\*DC12\*DC22\*SC2\*SB11+ VD4\*DC11\*DC21\*SB12+

PT=B1\*B2+SC2+CSI\*SC1