Поиск отклонений от предсказаний СМ в процессах одиночного рождения топ-кварка в эксперименте D0

New physics for sale

Э. Боос, В. Буничев, Л. Дудко, М. Перфилов Одиночное рождение топ-кварка в СМ Одиночное рождение топ-кварка вне рамок СМ: W', Аномальные Wtb связи, FCNC, Заряженный скаляр

Топ кварк, одиночное рождение

- Фермион, спин ½, изотопический партнер bкварка, цветовой триплет, электрический заряд +2/3, Macca 170.9 ±1.8 ГэВ t-channel ($Q_W^2 < 0$)
- Одиночное (электрослабое) рождение:

s-channel $(Q_W^2 > 0)$

associated tW ($Q_W^2 = M_W^2$)

Главные особенности одиночного рождения топ-кварка

- Независимый электрослабый канал рождения топ-кварков σ_{TEVATRON} =2.9 pb; σ_{LHC} =320 pb;
- Прямое измерение параметра |V_{tb}| ККМ матрицы
- Важный фон при поиске Хиггс-бозона
- Уникальные спиновые свойства
- Уникальные возможности для поиска «Новой физики»
 - Аномальные Wtb связи
 - Нейтральные токи (FCNC)
 - □ Дополнительные векторные и скалярные бозоны (W', H⁺, п', π_{T} , ρ_{T})
- Отработка новых многомерных методов анализа

D0 детектор коллайдера Теватрон

Коллаборация DZero: 600 человек, 90 институтов, 19 стран

Группа DZero Single Top: 48 человек

Первое наблюдение электрослабого рождения топ-кварков (D0, 2006 год)

CDF and DØ tb+tqb Cross Section

Первые прямые измерения V_{tb}

Одиночное рождение топ-кварка вне рамок Стандартной модели (CM)

Аномальные связи в структуре Wtb вершины

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \underbrace{V_{tb}}_{tb} \left\{ \gamma^{\mu} \left[f_1^L P_L + f_1^R P_R \right] - \frac{i\sigma^{\mu\nu}}{M_W} \left(p_t - p_b \right)_{\nu} \left[f_2^L P_L + f_2^R P_R \right] \right\}$$

 Дополнительные векторные и скалярные бозоны (W', H+)

$$L = \frac{V_{q_i q_j}}{2\sqrt{2}} g_W \bar{q}_i \gamma_\mu [a_{q_i q_j}^R P_R + a_{q_i q_j}^L P_L] W' q_j + H.C.$$

• Нейтральные токи меняющие аромат кварков (FCNC) $\frac{\kappa_f}{\Lambda} g_s \bar{f} \sigma^{\mu\nu} \frac{\lambda^a}{2} t G^a_{\mu\nu}$

 $P_{L,R} = 1/2 \cdot (1 \mp \gamma_5) \qquad \sigma^{\mu\nu} = i/2[\gamma^{\mu}, \gamma^{\nu}]$

ДОПОЛНИТЕЛЬНЫЙ ВЕКТОРНЫЙ БОЗОН W'

$$L = \frac{V_{q,q_{j}}}{2\sqrt{2}} g_{W} \bar{q}_{i} \gamma_{\mu} [a_{q,q_{j}}^{R}(1+\gamma_{5})+a_{q,q_{j}}^{L}(1-\gamma_{5})] W' q_{j} + H.C.$$

$$a_{q,q_{j}}^{R}, a_{q,q_{j}}^{L} - left and right couplings of W' to fermions$$

$$|M|^{2} = SM + 2 \cdot a_{ud}^{L} \cdot a_{lb}^{L}$$

$$|M|^{2} = SM + 2 \cdot a_{ud}^{L} \cdot a_{lb}^{L}$$

$$+ [(a_{ud}^{L})^{2}(a_{lb}^{R})^{2} + (a_{ud}^{R})^{2}(a_{lb}^{R})^{2}] W + [(a_{ud}^{L})^{2}(a_{lb}^{R})^{2} + (a_{ud}^{R})^{2}(a_{lb}^{L})^{2}] W$$

$$+ [(a_{ud}^{L})^{2}(a_{lb}^{R})^{2} + (a_{ud}^{R})^{2}(a_{lb}^{R})^{2}] W + [(a_{ud}^{L})^{2}(a_{lb}^{R})^{2} + (a_{ud}^{R})^{2}(a_{lb}^{L})^{2}] W$$

$$+ [0.5 \text{ simulate general coupling dependence we need: Phys. Lett. B 655:245.250,2007 E.Boos. W. Bunichev, L.Dukoto, M. Perflow W': a_{ud}^{L} = a_{lb}^{L} = 1, a_{ud}^{R} = a_{lb}^{L} = 0$$

$$2) \text{ purely left-handed W': } a_{ud}^{L} = a_{lb}^{L} = 1, a_{ud}^{R} = a_{lb}^{L} = 0$$

$$3) \text{ L-R mixing: } a_{ud}^{L} = a_{lb}^{R} = a_{lb}^{L} = a_{ud}^{R} = 1$$

W'→tb первые результаты D0 230pb⁻¹

- W' 600 GeV

W' 700 GeV

1500

800

√ŝ [GeV]

95% C.L. limit

750

W' mass [GeV]

t-channel

₩+jets

Multijet

tī

Phys. Lett. **B**, 641 (2006) 423-431

W'→tb результаты D0 2008, 0.9 fb⁻¹

Phys. Rev. Lett. 100, 211803 (2008)

Process	Event	S	$M_{W'}$	W_L'				W_R'				
	$SM + W'_L$ search	W'_R search	- (GeV)	Theory	Evts	Exp	Obs	Theory		Evts	Exp	Obs
Single top	6.4 ± 1.4	10.2 ± 2.2						(I)	(II)		•	
$t\bar{t}$	59.1 ± 1	4.4	600	2.17	58	0.69	0.66	2.10	2.79	61	0.67	0.58
W + jets	91.0 ± 1	8.8	650	1.43	33	0.65	0.69	1.25	1.65	35	0.55	0.59
Multijets	29.7 ± 3	5.9	700	1.01	19	0.69	0.74	0.74	0.97	20	0.50	0.54
Total background	186.1 ± 40.4	190.0 ± 41.2	750	0.76	11	0.80	0.93	0.71	0.57	$\frac{1}{12}$	0.20	0.50
Data	182		- 800	0.70	6	1.04	1.23	0.11	0.34	12	0.42	0.50
			850	0.55	4	1.04	1.25	0.20	0.20	, 	0.42	0.47
			000	0.55	3	2 3 5	2.70	0.10	0.20	$\frac{1}{2}$	0.40	0.40
<u> </u>			900	0.51	5	2.55	2.19	0.09	0.12	2	0.40	0.44
10 ³	a) DØ 0.9 fb ⁻¹	🕶 data		10° <mark>Ер</mark>)	DØ 0	9 fb ⁻¹		🗕 data				
		····· W' 700 GeV						····· W' 700	GeV			
3 10 ²		single top	je V	10 ²	++++++	.		single	top			
Ŭ	· · · · ·	tī W⊥iets	0	Ē	+		Þ	tī ₩+iete				
۵ ۲ ا		multijets	»/5	10	-	יין		multije	, ets			
uts.		. .	nts		•	1		LI.				
ver			ve	Ē								
ய் 1	╡╏ [┍] ╲╴╭ [╱]		ш	1	t			T to the second se				
				Ē			ر. م	<u>_</u>				
10 ⁻¹	╶╶╶╽╏╴╴╴╴╷┡┓┲╼ᡗ		-	10-1			المعمى					
10 0	200 400 600	0 800 100	0	0	200	400	60	00 800	10	00	10	
	√ŝ [GeV]					√ŝ	[GeV]			10	

W'→tb результаты D0 2008, 0.9 fb⁻¹

FIG. 2 (color online). NLO theory cross sections and 95% C.L. limits for $\sigma_{W'} \times B(W' \to tb)$ as a function of W' mass for (a) W'_L production and (b) W'_R production. Observed limits on the ratio of coupling constants g'/g_w are shown in (c). The shaded regions are excluded by this analysis.

$$g' = g_w a_{ij}^R$$

Ограничения на рождение

заряженного скалярного бозона

Поиск нейтральных токов меняющих аромат кварков (FCNC)

g

 $\frac{\kappa_f}{\Lambda} g_s \bar{f} \sigma^{\mu\nu} \frac{\lambda^a}{2} t G^a_{\mu\nu}$

g

ū.č

hannel Muon channel
$0.2 0.6 \pm 0.2$
$2.1 9.8 \pm 2.7$
$1.4 6.1 \pm 1.4$
6.9 31.4 ± 7.0
$10.2 76.8 \pm 8.5$
4.3 17.2 ± 1.5
13.4 131.5 ± 12.7
118
15

Ограничения на tcg, tug FCNC связи

Phys. Rev. Lett. 99, 191802 (2007)

Поиск аномальных Wtb связей

$$\mathcal{L}_{tbW} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t - \frac{g}{\sqrt{2} M_{W}} \partial_{\nu} W_{\mu}^{-} \bar{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t + h.c.$$

 $\sigma \propto A \cdot (F_{LI})^2 + B \cdot (F_{RI})^2 + C \cdot (F_{LI} \cdot F_{L2}) + D \cdot (F_{RI} \cdot F_{R2}) + E \cdot (F_{L2})^2 + G \cdot (F_{R2})^2$

Поиск аномальных Wtb связей

Первые прямые ограничения на аномальные Wtb связи, D0 0.9 fb⁻¹

PRL 101, 221801 (2008)

Scenario	Cross Section	Coupling
(L_1, L_2)	$4.4^{+2.3}_{-2.5}$ pb	$ V_{tb}f_1^L ^2 = 1.4^{+0.6}_{-0.5}$
		$ V_{tb}f_2^L ^2 < 0.5$ at 95% C.L.
(L_1, R_1)	$5.2^{+2.6}_{-3.5}$ pb	$ V_{tb}f_1^L ^2 = 1.8^{+1.0}_{-1.3}$
		$ V_{tb}f_1^R ^2 < 2.5$ at 95% C.L.
(L_1, R_2)	$4.5^{+2.2}_{-2.2} \text{ pb}$	$ V_{tb}f_1^L ^2 = 1.4^{+0.9}_{-0.8}$
		$ V_{tb}f_2^R ^2 < 0.3$ at 95% C.L.

Run II Integrated Luminosity

19 April 2002 - 1 June 2008

Expect ~6 fb⁻¹ by Apr 2009, and 8 fb⁻¹ by Oct 2010.

Заключение

- В ближайшее время можно ожидать открытия одиночного рождения топ-кварков на уровне достоверности в 5о
- Увеличение статистики (в 4-6 раз) позволит существенно повысить точность измерения V₁

ограничения на возможные отклонения от предсказаний СМ

- Данные LHC позволят исследовать электрослабое рождение топ-кварка на принципиально новом уровне статистической достоверности.
- Накопленный опыт исследования данных процессов напрямую используется в коллаборации CMS (LHC)

Дополнительная информация

Комбинация результатов трех методов отбора событий

0.9 fb⁻¹

Combine the three measurements with BLUE method

- Method requires to measure the correlations
- **b** Used SM pseudo-datasets with systematics $\rho =$

DØ Run II

 $\left(\begin{array}{ccccccccc} 0.57 & 1 & 0.45 & ME \\ 0.51 & 0.45 & 1 & BNN \end{array}\right)$

Комбинированный результат 4.8±1.3 pb с достоверностью 3.5σ

соответствует вероятности флуктуации фона до измеренного значения сечения 0.027% Первое прямое измерение | V_{tb} |

- **Calculate posterior in** $|V_{tb}|^2$: $\sigma \propto |V_{tb}|^2$
- Assume: SM top decay: V_{td}²+V_{ts}² ≪ V_{tb}²
 Pure V-A and CP conserving interaction

Basic production processes cross sections

	$\sigma_{ m NLO}$ (pb)	$q\bar{q} \rightarrow t\bar{t}$	$gg \to t\bar{t}$
Tevatron ($\sqrt{s} = 1.8 \text{ TeV } p\bar{p}$)	$4.87 \pm 10\%$	90%	10%
Tevatron ($\sqrt{s} = 2.0 \text{ TeV } p \bar{p}$)	$6.70 \pm 10\%$	85%	15%
LHC ($\sqrt{s} = 14 \text{ TeV } pp$)	$833 \pm 15\%$	10%	90%

	s channel	t channel	Wt
Tevatron ($\sqrt{s} = 2.0$ TeV $p\bar{p}$)	$0.90\pm5\%$	$2.0\pm5\%$	$0.1 \pm 10\%$
LHC ($\sqrt{s} = 14$ TeV pp)	$10.6\pm5\%$	$250\pm5\%$	$75 \pm 10\%$

The single top rate is about 0.4 of the top pair rate

Продолжение исследований в CMS

- Моделирование СМ сигнала с новой моделью СМS детектора
- Моделирование возможных отклонений от СМ
- Подготовка методов оптимизации анализа и оценка ожидаемых результатов с учетом современной модели детектора и программ реконструкции

$\left|V_{tb}\right|$ measurements

If CKM unitarity and 3 generations are assumed $|V_{tb}| = 0.9991^{+0.000034}_{-0.00004}$

Without the 3-generation unitarity constrain $\left|Vtb\right|$ is left practically unconstrained

|Vtb| = 0.07 - 0.9993

From top quark loop contributions to $\Gamma(Z \to b\bar{b})$ $|V_{tb}| = 0.77^{+0.18}_{-0.24}$

From measurements of $R = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$ by D0 and CDF analysing top pair production $R = 1.03^{+0.19}_{-0.17} => |V_{tb}| > 0.78$

Measurements from the single top: Production*Decays => $|V_{tb}|^2 \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{td}|^2 + (Exotics)}$ Assumptions (no 3-generation unitarity constrain): * V-A interaction * $|V_{tb}|^2 >> |V_{tb}|^2 + |V_{tb}|^2 + (Exotics)$

* $|V_{tb}|^2 >> |V_{ts}|^2 + |V_{td}|^2 + (Exotics)$

Anomalous Wtb Couplings

Lagrangian

$$\mathcal{L} = \frac{g}{\sqrt{2}} V_{tb} \left[W_{\nu}^{-} \bar{b} \gamma_{\mu} P_{-} t - \frac{1}{2M_{W}} W_{\mu\nu}^{-} \bar{b} \sigma^{\mu\nu} (F_{2}^{L} P_{-} + F_{2}^{R} P_{+}) t \right] + h. c.$$

with $W_{\mu\nu}^{\pm} = D_{\mu}W_{\nu}^{\pm} - D_{\nu}W_{\mu}^{\pm}$, $D_{\mu} = \partial_{\mu} - ieA_{\mu}$, $\sigma^{\mu\nu} = i/2[\gamma_{\mu}, \gamma_{\nu}]$ and $P_{\pm} = (1 \pm \gamma_5)/2$. The couplings F_2^L and F_2^R are proportional to the coefficients of the effective Lagrangian $F_{L2} = \frac{2M_W}{\Lambda}\kappa_{tb}^W(-f_{tb}^W - ih_{tb}^W)$, $F_{R2} = \frac{2M_W}{\Lambda}\kappa_{tb}^W(-f_{tb}^W + ih_{tb}^W)$, $|F_{L2,R2}| < 0.6$ from unitary bounds

- $|V_{tb}|$ is very close to 1 in SM with 3 generations. ($|V_{tb}|$ is very weakly constrained in case of 4 generations, e.g.)
- A possible V+A form factor is severely constrained by the CLEO $b\to s\gamma$ data to 3×10^{-3} level

Wtb anomalous couplings limit on TEVATRON and LHC:

(E.Boos, L.Dudko, T.Ohl, EPJ99)

FCNC couplings

• Couplings: $tqg, tq\gamma, tqZ$, where q = u, c

$$\Delta \mathcal{L}^{eff} = \frac{1}{\Lambda} \left[\kappa_{tq}^{\gamma,Z} e \bar{t} \sigma_{\mu\nu} q F^{\mu\nu}_{\gamma,Z} + \kappa_{tq}^g g_s \bar{t} \sigma_{\mu\nu} \frac{\lambda^i}{2} q G^{i\mu\nu} \right] + h.c.$$

Information on FCNC couplings come from either top pair production with subsequent decays to rear modes $t \rightarrow q V$, where $V = \gamma, Z, g$ or from additional contributions to the single top production

Searches for W'

$$\mathcal{L} = \frac{V_{q_i q_j}}{2\sqrt{2}} g_w \overline{q}_i \gamma_\mu \left(a_{q_i q_j}^R (1 + \gamma^5) + a_{q_i q_j}^L (1 - \gamma^5) \right) W' q_j + \text{H.c.}, \qquad (1)$$

The notations are taken such that for so-called SM-like $W' a_{q_iq_j}^L = 1$ and $a_{q_iq_j}^R = 0$.

Problems and requirements for a generator for the single top signal:

- Double counting and negative weights
- Matching of various NLO contributions at the generator level. One should have the correct NLO rate and correct shapes of the NLO distributions
- Matching to showering programs
- Correct spin correlations
- Finite top and W widths
- Separation Top and antiTop since the rates are different (for the LHC)
- Anomalous Wtb and FCNC couplings

t-channel

Splitting on p_t of the b-jet (b-jet not from top decay)

 $2 \rightarrow 2$ with ISR at "small" p_t region (CompHEP + ISR from PYTHIA)

 $2 \rightarrow 3$ at "large" p_t region (CompHEP)

(for both cases with spin correlated $1 \rightarrow 3$ top subsequent decay)

The separation parameter $(P_0)_t^b$ of "small" and "large" p_t regions is turned such that:

1. The total rate is normalized to the NLO rate

$$\sigma_{2 \to 2} \mid_{P_t^b < (P_0)_t^b} + \sigma_{(2 \to 3)} \mid_{P_t^b > (P_0)_t^b} = \sigma_{\text{NLO}}$$

2. The distributions are smooth

Matching CompHEP&PYTHIA $(2 \rightarrow 2)$ and CompHEP $(2 \rightarrow 3)$ distributions $(P_T^q > 10 \text{ GeV})$

including deavs $2 \rightarrow 4$ and $2 \rightarrow 5$ (LHC)

Результат многомерных методов анализа

37

Сравнение измерений CDF и D0

Decision Trees - Observed

tbtqb

tbtqb

1910

2.87

1.604

68150

0.525

0.7963

Fermilab Result of the Week, 19.06.08

http://www.fnal.gov/pub/today/resultoftheweek/

