

On the possibility to study multiple parton scattering in ATLAS experiment

О возможности изучения многопартонных взаимодействий в эксперименте АТЛАС

Мягков А.Г.*, Зенин О.В.*, Новоселов А.А.*, †

* Институт Физики Высоких Энергий † Московский Физико-Технический Институт

Научная сессия-конференция секции ядерной физики ОФН РАН 2008

Introducion

- Double (multiple) parton scattering (DPS (MPS)) = process where two (more) parton scatterings occur in one hadron-hadron interaction.
- The impact parameter is the source of the spatial correlations of partons.
- The connecting gluons are the source of process correlations.
- The MPS provides information on spatial distribution of partons within the proton as well as other parton-parton correlations.

Cross section of DPS

In the simplest model, DPS is a combination of two independent scatterings. For the DPS process comprised of scatterings A and B

$$\sigma_{\rm DPS} = \frac{\sigma_A \sigma_B}{\sigma_{\rm eff}}$$

- An additional factor of one-half is needed if A and B are indistinguishable scatterings.
- σ_{eff} contains all information about the non-perturbative structure of proton, in simplest approximation: $\sigma_{eff} \sim size \ of \ proton = \pi R^2 \sim 40 \ mb$.
- This value differs significantly from the measured values.

Effective cross section measurements

- AFS Collaboration: [T.Akesson et al., Z.Phys.C34 (1987) 163]
 - pp interactions at $\sqrt{s} = 63 \ GeV$
 - Search for 4 jet events; Result: $\sigma_{eff} = 5 \ mb$
- UA2 Collaboration: [J.Alitti et al. [UA2 Collaboration], Phys.Lett. B268 (1991) 145]
 - pp(bar) interactions at $\sqrt{s} = 630 \text{ GeV}$
 - Search for 4 jet events; Result: $\sigma_{eff} > 8.3 \text{ mb}$ at 95% C.L.
- CDF Collaboration:
 - pp(bar) interactions at $\sqrt{s} = 1.8 \ TeV$
 - Search for 4 jet events; Result: $\sigma_{eff} = 12.1 \text{ mb}$ [F.Abe at al. [CDF Collaboration], Phys.Rev. D47 (1993) 4857]
 - Search for 3 jets+direct photon; Result: $\sigma_{eff} = 14.5 \pm 1.7 \ mb$ [F.Abe at al. [CDF Collaboration], Phys.Rev.Lett. 79 (1997) 584]

The final states

- Ways to obtain the same final state:
 - Perturbative corrections to the single parton scattering (the leading QCD process)
 - Multiple parton scattering
- Competitive final states of DPS:
 - 4 b-jets / $H \rightarrow bb'$
 - 3 jets + γ / direct photon production
 - Same-sign W pair production
 - Vector boson + 2 jets
 - Double Drell Yan

Generation of MPS with pythia8

- Model assumptions:
 - Central collisions are likely to have more activity, peripheral less.

Impact factor f_{impact} is chosen event-by-event and can be averaged during the course of the run.

 The double Gaussian form of matter overlap profile, used in the Tune A (default), gives approximately <<u>f_impact</u>> = 2.5,

$$\sigma_{eff} = \sigma_{ND} / \langle f_{impact} \rangle$$

where σ_{ND} is the total non-diffractive cross section.

Same-sign W pair production

- $\sigma_{W+W+(DS)} = 0.30 \, pb$ $\sigma_{W-W-(DS)} = 0.16 \, pb \, (pythia8)$
- $\sigma_{W+W+\&2j} = 0.54 \, pb$

$$\sigma_{W-W-\&2j} = 0.27 \, pb \, (MadGraph)$$

- Reducible backgrounds:
 - WZ production with further loss of 1 lepton from Z,
 - Wrong lepton sign reconstruction,
 - Photons identified as electrons.

Reducible BG - WZ

• Inv. mass of (e + jet) for events with $N_e = 1$

Reducible BG - WZ

Jet in barrel vs. jet out barrel

Reducible BG - wrong lepton sign reconstruction

$$\frac{\sigma_{W+W-}}{\sigma_{W+W+(DS)}} \sim 40$$

- Probability of sign misidentification can be obtained from the real data on the decays of *Z*-candidates. The expected value is ~ 2-3% => $\frac{signal}{backgound}$ ~ 0.8
- For detector there is no difference between *e* from *Z* decay and from *W* decay.
- So, this BG can be measured precisely and subtracted.

Single Z plus 2 jets

• $Z(\rightarrow e^+e^-, \mu^+\mu^-)$ plus 2 jets production:

- $\sigma_{Z+2j(DS)} = 0.57 nb$ (pythia8)
- $\sigma_{Z+i} = 1.5 \ nb$ (MadGraph + pythia)

• $\sigma_{Z+2i} = 1.1 \ nb$ (MadGraph + pythia) • $\sigma_{Z+3i} = 0.74 \ nb$ (MadGraph + pythia)

Single W plus 2 jets

- $W(\rightarrow ev, \mu v)$ plus 2 jets production:
 - $\sigma_{W+2j(DS)} = 6.1 nb$ (pythia8)
 - $\sigma_{W+j} = 8.0 \ nb$ (MadGraph + pythia)

• $\sigma_{W+2i} = 5.8 \ nb$ (MadGraph + pythia) • $\sigma_{W+3i} = 4.1 \ nb$ (MadGraph + pythia)

Conclusion

- MPS will contribute to many important processes, like a Higgs boson production.
- The precise measurement of the MPS cross sections can bring a more accurate picture of hadron structure.
- Cross-sections of DPS processes are sufficient for DPS to be observed at LHC luminosities.
- ATLAS detector provides effective means of DPS investigation.