Измерение сечения процесса $e^+e^- \rightarrow \eta \pi^+\pi^-$ с детектором СНД на ВЭПП-2М в области энергии 1.04 ГэВ – 1.38 ГэВ

Дмитрий Штоль

Институт ядерной физики СО РАН

Процесс $e^+e^- \to \eta \pi^+\pi^-$

$$V=
ho$$
(770), ho (1450), ho (1700)

Параметры комплекса:

•
$$\sqrt{s} = 0.4 \div 1.4 \ \mbox{F} \ \mbox{s} \ \mbox{B};$$

•
$$IL_{max} = 4 \cdot 10^{30} \text{cm}^2 \text{cek}^{-1}$$
;

Работал с 1974 по 2000 гг.

Использованные данные:

Использовались данные трех сканирований с шагом 10 МэВ в области $\sqrt{s} = 1040 \div 1380$ МэВ с полной интегральной светимостью 9.054 пб $^{-1}$.

Схема СНД. 1 – вакуумная камера, 2 – дрейфовые камеры, 3 – сцинтилляционный счетчик, 4 – световоды, 5 – ФЭУ, 6 – кристаллы Nal(TI), 7 – фототриоды, 8 – поглотитель (Fe), 9 – стримерные трубки, 10 – 1 см железные пластины, 11 – сцинтилляционные счетчики, 12 – магнитные линзы, 13 – поворотные магниты.

Условия отбора

Процесс $e^+e^- \to \eta \pi^+\pi^-$ изучается в канале распада $\eta \to \gamma\gamma~(Br=39.38\%)$.

- Наличие ровно двух заряженных частиц с треками в дрейфовой камере и ровно двух нейтральных частиц;
- $0.5 < E_{tot}/2E_{beam} < 0.9$ полное энерговыделение в калориметре;
- 22.5° < $\theta_{1,2} < 157.5^\circ$ полярный угол для заряженных частиц;
- $36^{\circ} < heta_{3,4} < 144^{\circ}$ полярный угол для нейтральных частиц;
- |Z| < 5 см Z-координата точки вылета заряженных частиц по результатам реконструкции;
- $R_{1,2} < 1$ см расстояние от трека до оси пучков;
- $\chi^2_{\pi^+\pi^-\gamma\gamma} < 20$ параметр кинематической реконструкции в гипотезе $e^+e^- \to \pi^+\pi^-\gamma\gamma$.

E 990

Фоновые процессы

Определение числа событий $(\eta o \gamma \gamma) \pi^+ \pi^-$

Аппроксимация спектров производится суммой двух распределений Гаусса (эффект) и полинома второй степени (фон).

Зависимость эффективности регистрации процесса $e^+e^- \to \eta \pi^+\pi^-$ от энергии для различных сканирований.

8

Аппроксимация борновского сечения $e^+e^- o \eta \pi^+\pi^-$

Функция для аппроксимации выбрана на основе работы ¹.

$$\sigma_{\mathsf{B}}(s) = \frac{4\alpha^2}{3} \frac{1}{s\sqrt{s}} |F(s)|^2 \int_{4m_{\pi}^2}^{(\sqrt{s}-m_{\eta})^2} \frac{\sqrt{q^2}\Gamma_{\rho}(q^2)p_{\eta}^3(s,q^2)}{(q^2-m_{\rho}^2)^2 + (\sqrt{q^2}\Gamma_{\rho}(q^2))^2} dq^2,$$
(1)

$$p_{\eta}^2 = \frac{(s - m_{\eta}^2 - q^2)^2 - 4m_{\eta}^2 q^2}{4s}$$

Зависимость ширины ho(770) от энергии описывается формулой:

$$\Gamma_{\rho}(q^{2}) = \Gamma_{\rho}(m_{\rho}^{2}) \frac{m_{\rho}^{2}}{q^{2}} \left(\frac{p_{\pi}^{2}(q^{2})}{p_{\pi}^{2}(m_{\rho}^{2})}\right)^{\frac{3}{2}},$$

$$p_{\pi}^{2}(q^{2}) = \frac{q^{2}}{4} - m_{\pi}^{2}$$
(2)

¹Н.Н. Ачасов, В.А. Карнаков. К исследованию реакции $e^+e^- \to \eta\pi^+\pi^-$. Письма в ЖЭТФ т.39 вып. 6, 1984.

Формфактор F(s) описывается как

$$F(s) = \sum_{V} \frac{m_V^2}{g_{V\gamma}} \frac{g_{V\rho\eta}}{s - m_V^2 + i\sqrt{s}\Gamma_V(s)}$$
(3)

Где $V = \rho(770), \ \rho(1450)$ и $\rho(1700).$ Для $\rho(1450)$ и $\rho(1700)$ принимается $\Gamma_V(s) = \Gamma_V(m_V^2).$ Значения $g_{\rho\rho\eta}$ и $g_{\rho\gamma}$ вычислялись из данных PDG по формулам²:

$$g_{\rho\gamma}^{2} = \frac{4\pi}{3} \alpha^{2} \frac{m_{\rho}}{\Gamma_{\rho \to e^{+}e^{-}}}, \quad g_{\rho\gamma} = 4.97$$

$$g_{\rho\eta\gamma}^{2} = \frac{24}{\alpha} m_{\rho}^{3} \frac{\Gamma_{\rho \to \eta\gamma}}{(m_{V}^{2} - m_{\eta}^{2})^{3}},$$

$$g_{\rho\rho\eta} = g_{\rho\gamma} g_{\rho\eta\gamma} = 0.007786 \text{ M} \circ \text{B}^{-1}$$
(4)

 $A_V = g_{V
ho\gamma}/g_{V\gamma}$. Свободными параметрами аппроксимации являются $A_{
ho(1450)}$ и $A_{
ho(1700)}$. Фазы предполагаются равными 0 или π .

²M.N. Achasov, Study of the process $e^+e^- \rightarrow \pi^+\pi^-$ in the energy region 400 $<\sqrt{s} < 1000$ MeV. arXiv:hep-ex/0506076, 2005.

Вычисление радиационных поправок

С использованием функции $\sigma_{\rm B}(s)$ строится функция, описывающая видимое сечение³:

$$\sigma_{\rm vis}(s) = \int_{0}^{\frac{2E_{max}}{\sqrt{s}}} F(z,s)\sigma_{\rm B}(s(1-z))dz$$
(5)

Где F(z,s) – плотность вероятности излучения фотона с энергией $z\sqrt{s}/2$. Функция $\sigma_{\rm vis}(s)$ используется для аппроксимации измеренного видимого сечения с помощью программы FIT⁴.

Радиационная поправка вычисляется по формуле:

$$1 + \delta(s) = \frac{\sigma_{\text{vis}}(s)}{\sigma_{\text{B}}(s)} \tag{6}$$

$$\sigma_{\rm B}^{\rm exp}(s_i) = \frac{\sigma_{\rm vis}^{\rm exp}(s_i)}{1 + \delta(s_i)} \tag{7}$$

³Э.А. Кураев, В.С. Фадин. О радиационных поправках к сечению однофотонной аннигиляции e^+e^- -пары большой энергии.

⁴А.В. Боженок и др. Пакет программ аппроксимации сечений в эксперименте СНД. Препринт ИЯФ 99-103, 1999. <□>

Борновское сечение

Результаты измерения борновского сечения для процесса $e^+e^- \rightarrow \eta \pi^+\pi^-$ на СНД. Для сравнения приведены данные BaBar⁵ и КМД2⁶.

⁵B. Aubert et al. The $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$, $2(\pi^+\pi^-)\eta$, $K^+K^-\pi^+\pi^-\pi^0$ and $K^+K^-\pi^+\pi^-\eta$ Cross Sections Measured with Initial-State Radiation. arXiv:0708.2461v1 [hep-ex] 18 Aug 2007.

⁶R.R. Akhmetshin et al. Study of the process $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$ with the CMD-2 detector. Phys. Lett. B 489 (2000) 125-130.

Дмитрий Штоль

12

- Получены предварительные результаты измерения сечения процесса $e^+e^- \to \eta \pi^+\pi^-$ в области $\sqrt{s} = 1.04$ ГэВ $\div 1.38$ ГэВ.
- Полученные результаты согласуются с результатами BaBar и КМД-2, при этом имеют лучшую статистическую точность.

\sqrt{s} , МэВ	$\sigma_{ m vis}$, нб	σ_{B} , нб	$1+\delta$
1080.43	<0.19 CL=95%	<0.217 CL=95%	0.875
1167.29	0.074 ± 0.047	0.084 ± 0.054	0.876
1237.63	0.221 ± 0.081	0.253 ± 0.093	0.872
1289.71	0.336 ± 0.100	0.388 ± 0.116	0.868
1325.54	0.600 ± 0.165	0.693 ± 0.192	0.866
1351.41	0.645 ± 0.114	0.743 ± 0.134	0.867
1376.52	1.107 ± 0.188	1.271 ± 0.218	0.871

Таблица: Борновское сечение

з

-

Интервал,	$2\overline{E}$,	Число	Интегральная	Сечение
MeV	MeV	событий	светимость, нб $^{-1}$	регистрации, пб
1012.5-1112.5	1080.4	-2.06 ± 3.15	381.78	-5.4 ± 8.2
1112.5-1212.5	1167.3	1.60 ± 1.67	69.32	23.1 ± 24.1
1262.5-1312.5	1289.7	0.71 ± 1.71	23.26	30 5 \pm 73 4

Эксперимент МНАD9701

Эксперимент МНАD9702

Интервал,	$2\overline{E}$,	Число	Интегральная	Сечение
MeV	MeV	событий	светимость, нб $^{-1}$	регистрации, пб
1012.5-1112.5	1080.4	1.3 ± 3.5	426.65	3.0 ± 8.3
1112 5-1212 5	1167.3	16.9 \pm 8.5	1056.91	16.0 \pm 8.0
1212.5-1262.5	1237.6	20.9 \pm 7.9	805.07	$\texttt{26.0}\pm\texttt{9.9}$
1262.5-1312.5	1289.7	37.6 ± 11.2	1192.67	31.5 ± 9.4
1312 5-1337 5	1325.5	29.2 ± 8.0	528.58	55.2 ± 15.2
1337 5-1362 5	1351.4	54.4 \pm 11.0	740.84	73.4 \pm 14.9
1362 5-1387 5	1376.5	72.8 \pm 12.4	735.91	98 9 \pm 16 8

∃ ► < ∃ ►</p>

Эксперимент МНАD9901

Интервал,	$2\overline{E}$,	Число	Интегральная	Сечение
MeV	MeV	событий	светимость, нб $^{-1}$	регистрации, пб
1012 5 1112 5	1080.4	-2.9 ± 4.5	929.45	-3.1 ± 4.8
1112 5 1212 5	1167.3	$2.0~\pm~6.6$	1156.15	$1.7~\pm$ 5.7
1212 5-1262 5	1237.6	5.5 ± 5.3	428.18	12.9 \pm 12.5
1337.5-1362.5	1351.4	25.8 ± 8.3	579.67	44.6 \pm 14.3

★聞▶ ★ 国▶ ★ 国▶

3

\sqrt{s} , MeV	$\sigma_{reg},\;пб$	ϵ , %	$\sigma_{\sf vis}$, нб
1012.5-1112.5	-5.4 ± 8.2	9.65	-0.056 ± 0.086
1112.5-1212.5	23.1 ± 24.1	9.64	0.239 ± 0.251
1212.5-1262.5	—	9.55	—
1262.5-1312.5	30.5 \pm 73.4	9.44	0.323 ± 0.778
1312.5-1337.5	—	9.34	_
1337.5-1362.5	—	9.25	_
1362.5-1387.5	_	9.16	_

Эксперимент MHAD9701

Эксперимент MHAD9702

\sqrt{s} , MeV	$\sigma_{reg}, п б$	ε, %	$\sigma_{ m vis},$ нб
1012 5-1112 5	3.0 ± 8.3	9.66	0.031 ± 0.086
1112 5 1212 5	16.0 \pm 8.0	9.66	0.165 ± 0.083
1212 5-1262 5	25.9 ± 9.9	9.53	0.272 \pm 0.103
1262 5-1312 5	31.5 \pm 9.4	9.36	0.337 \pm 0.101
1312 5-1337 5	55.2 ± 15.2	9.21	0.600 ± 0.165
1337 5-1362 5	73.4 \pm 14.9	9.07	0.809 \pm 0.164
1362 5-1387 5	98.9 ± 16.8	8.93	1.107 \pm 0.188

0.0000000000000000000000000000000000000			
\sqrt{s} , MeV	<i>σ</i> _{reg} , пб	ϵ , %	$\sigma_{ m vis}$, нб
1012 5-1112 5	-0 003 \pm 0 005	9.75	-0.032 ± 0.049
1112 5-1212 5	0.002 ± 0.006	9.61	0.018 \pm 0.059
1212.5-1262.5	0.013 ± 0.012	9.44	0 136 \pm 0 132
1262.5-1312.5	_	9.28	_
1312.5-1337.5	_	9.16	_
1337.5-1362.5	0.045 ± 0.014	9.06	0 492 \pm 0 158
1362.5-1387.5	_	8.96	_

Эксперимент МНАD9901

Видимое сечение, усредненное по

экспериментам

-	
\sqrt{s} , MeV	$\sigma_{\sf vis}$, нб
1012.5-1112.5	-0.024 ± 0.038
1112 5-1212 5	0 074 \pm 0 047
1212.5-1262.5	0.221 ± 0.081
1262 5-1312 5	0.336 ± 0.100
1312 5-1337 5	0.600 ± 0.165
1337 5-1362 5	0.645 ± 0.114
1362 5-1387 5	$1\;107\;\pm\;0\;188$

$$\begin{aligned} &\sigma_{\text{vis}}^{i} \pm \delta_{i}, \text{ i=9701, 9702, 9901} \\ &w_{i} = 1/\delta_{i}^{2} \\ &W = \sum_{i} w_{i} \\ &\overline{\sigma_{\text{vis}}} = \frac{1}{W} \sum_{i} w_{i} \sigma_{\text{vis}}^{i} \end{aligned}$$

з

∃ ► < ∃ ►</p>

Поправка учитывает неточность моделирования множественности фотонов.

Использован процесс $e^+e^- \rightarrow 3\pi$ на энергии $\sqrt{s} = m_\phi = 1020$ МэВ. Отбор событий производился с помощью тех же условий, что и событий изучаемого процесса в другой области инвариантных масс фотонов.

Пусть $N^{exp}_{2\gamma}$ - число экспериментальных отобранных событий с двумя фотонами;

 N^{exp} - число экспериментальных отобранных событий с произвольным числом фотонов;

 $N_{2\gamma}^{mc}$ - число моделированных отобранных событий с двумя фотонами; N^{mc} - число моделированных отобранных событий с произвольным числом фотонов.

$$\delta_{eff} = \frac{N_{2\gamma}^{exp}/N^{exp}}{N_{2\gamma}^{mc}/N^{mc}} \tag{8}$$

$$\delta_{eff} = 0.9695$$